Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
わかりやすいパターン認識1章 / Pattern Recognition Manual Eas...
Search
masso
December 05, 2020
Science
0
200
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
わかりやすいパターン認識のセルフ輪読会資料〜第一章
masso
December 05, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
360
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.3k
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
1
670
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
1.1k
分析環境紹介LT / the introduction of as my analysis env is
masso
0
140
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
570
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.8k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.6k
Other Decks in Science
See All in Science
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
データマイニング - ノードの中心性
trycycle
PRO
0
320
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
620
HDC tutorial
michielstock
0
270
知能とはなにかーヒトとAIのあいだー
tagtag
0
130
Ignite の1年間の軌跡
ktombow
0
190
データマイニング - ウェブとグラフ
trycycle
PRO
0
220
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
320
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
190
Rails Girls Zürich Keynote
gr2m
95
14k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Technical Leadership for Architectural Decision Making
baasie
0
180
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
0
96
Context Engineering - Making Every Token Count
addyosmani
9
550
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
94k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Design in an AI World
tapps
0
100
Transcript
わかりやすいパターン認識 第⼀章 パターン認識とは︖
パターン認識の定義 観測されたパターンを予め定められた複数 の概念(class)のうちの⼀つに対応させる 処理
パターン認識の事例 • ⼿書きのアルファベットを26クラスに対応させる • ⾳声データを五⼗⾳や単語に対応させる(⾳声認識) • ⼼電図波形から⼼臓の異常・正常状態を判定 構造化データ、⾮構造化データ(画像・⾃然⾔語・⾳声)に関わらず様々な分 野で「パターン認識」はある。
パターン認識の⼀般的な処理の流れ 1. 前処理 1. ノイズ除去 2. 正規化 2. 特徴抽出 1.
本質的な特徴のみ抽出 3. 識別 1. 辞書と照合 識別 認識
特徴ベクトルと特徴空間 • d個の特徴︓d次元特徴ベクトルx • クラス総数c︓クラス名ωc • 特徴ベクトルのはる空間=特徴空間 • 特徴空間じょうで、特徴ベクトルは、 クラスごとにかたまっているはずで、
それらの塊=クラスタ
⼿書き数字認識の例 (5x5メッシュ2値画像) • 最もシンプルには…225パターン • 中には数字に関係ないものもある – リジェクト領域 • リジェクト領域は2種類
– 「どこにも属さない」と「識別困難」 • 辞書作成は必須。辞書作成⾃体が、識別 処理に他ならないからである
⼿書き数字認識の例 (5x5メッシュ2値画像) • 全パターンは⾮現実的、代表パターンだけを記憶(≒識別辞 書に記録)する⽅法がある。 • 代表パターン=プロトタイプ • 各特徴ベクトルが、どのプロトタイプに最も近いかで判定す ることが多い
(Nearest Neighbor rule︓NN法/最近傍決定則) • より⼀般化すると、k-NN法。最も近いk個のプロトタイプを 選び、k個のうち最も多くが属しているクラスを判定結果とす るやりかた。
特徴空間の分割〜プロトタイプを設定する • 全数記憶⽅式 – 現実のデータをサンプリングし、全体をよく表すパ ターンを(識別のための代表パターンとしての)プ ロトタイプとする⽅式 – 【注】サンプリング結果はすべてを表すものではな い
• プロトタイプ⽅式→k-meansにつながる – 各クラスに対して、⼀つのパターンを選ぶという発 想 – クラスの重⼼位置を選ぶというのは、⾃然=k- means – クラスごとの代表パターン間の垂直⼆等分線(多次 元空間であれば、超平⾯)を決定境界という
終わり