Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series...
Search
masso
December 17, 2020
Science
0
590
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
December 17, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
260
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.1k
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
940
分析環境紹介LT / the introduction of as my analysis env is
masso
0
120
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
masso
0
160
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
530
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.6k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.5k
Other Decks in Science
See All in Science
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
330
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
400
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
140
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
210
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
840
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
340
CV_3_Keypoints
hachama
0
160
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
710
統計学入門講座 第1回スライド
techmathproject
0
300
mathematics of indirect reciprocity
yohm
1
110
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
790
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
320
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Bash Introduction
62gerente
613
210k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
840
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Building an army of robots
kneath
305
45k
Side Projects
sachag
453
42k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.8k
It's Worth the Effort
3n
184
28k
Why Our Code Smells
bkeepers
PRO
336
57k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
A Modern Web Designer's Workflow
chriscoyier
693
190k
GitHub's CSS Performance
jonrohan
1031
460k
Transcript
基礎からわかる時系列分析 輪読会 第5回 〜ちょっと⽴ち⽌まって基本を学ぶ回〜
すいません、違う本の内容を紹介させてください (エクストリームすぎるだろw というツッコミ待ち) ✋
なぜ別の本を持ち出したか • 時系列分析の基本がわからなすぎて前回ついて いけなかった • 『基礎からわかる時系列分析』の場合、 AR/MA/ARMA/ARIMAあたりを丁寧に解説して いるところがなかった(そこを知りたい…) • 今回紹介する本は、そこんとこを優しく解説し
てくれてた
お品書き ① 時系列データを表現する上での基本 ② データの⽣成過程〜定常過程・⾮定常過程 ③ ARIMAモデルとはなんだ〜有⾺さんじゃないよ
時系列データを表現する上での 基本 『時系列分析と状態空間モデルの基礎』1部2章付近
学ぶ⽤語⼀覧 • ⾃⼰相関とコレログラム • 季節成分・周期成分 • トレンド • 外因性 •
ホワイトノイズ
⾃⼰相関とコレログラム ⾃⼰相関 過去の⾃分との相関。 時系列じゃない場合は、説 明変数XとYの相関Cov(x,y) とか考えるけど、時系列は、 ⾃分との相関Cov(Xt, Xt-1) を考える点が特徴といえる ⾃⼰相関係数(ACF)と
偏⾃⼰相関係数(PACF)がある コレログラム 何時点前との⾃⼰相関が強 いのかを判断するのに使わ れる作図⽅法
季節成分・周期成分 • 常にN時点前のデータと強い相関がある場合、 周期性があると⾔える • 単に、「⾃⼰相関がある」と捉えるだけで終わ らせてはいけない • 特に1年単位の周期があるもの(12ヶ⽉前と 強い相関がある)ものを季節性と呼ぶ
• 他にも週単位、⽇単位の周期性もある
トレンド • 例えば、「毎⽉の売上が20万円ずつ上昇する ような右肩上がりの業績データ」であれば、正 のトレンドがあるなどという • もう少し⼀般的な表現をするなら、「中⻑期的 なデータの単調変化(増加・減少)」とも⾔え るかも
外因性 • 外部の要因によるもの、例えば「近くでイベン トが⾏われたので売上が際⽴って⾼い⽇」の データなどは、外因性によるデータの振る舞い といえる • もう少し⼀般的な表現をするなら、「分析対象 としている『系』の外のイベントによる影響」 と⾔えそう
ホワイトノイズ • 純粋なノイズ。予測不可能と考えてよい。 • 具体的な条件は – 期待値が0 & 分散が⼀定 &
⾃⼰相関が0 • よく使われるのは、平均0で分散σ2の正規分布
時系列データの構造 時系列データ = 短期の⾃⼰相関 + 周期的変動(季節性含む) + トレンド + 外因性
+ ホワイトノイズ
データの⽣成過程 〜定常過程・⾮定常過程 『時系列分析と状態空間モデルの基礎』2部2章付近
特徴と定義 定常過程 ⾮定常過程 • 分析しやすい • 時点によらず期待値が⼀定 & 時点に よらず⾃⼰共分散・⾃⼰相関が時点差
のみに依存 • 分析しにくい • 定常過程以外の全て(現実はこっちが 多い)
定常過程が分析しやすい理由 • 基本統計量は以下のように表せる • これが時点によって変わらないので、ある区間(例えば1ヶ ⽉分)のデータから算出した期待値や分散がそのまま「特定 時点の期待値や分散の推定量」とみなせる • 定常過程データに対して(後述の)ARMAモデルが⾼い説明 能⼒を持つ
⾮定常過程のデータを扱いやすく変換する • 差分をとる→トレンドを消せる – d階差分をとると定常過程に変化するものをd次和分過程という
⾮定常過程のデータを扱いやすく変換する • 対数をとる→和が積になる。解釈内容が変わる。 時系列データ=周期的変動+トレンド+ホワイトノイズ log時系列データ=log周期的変動+logトレンド+logホワイトノイズ log(時系列データ)=log(周期的変動×トレンド×ホワイトノイズ)
ARIMAモデルとはなんだ 〜有⾺さんじゃないよ 『時系列分析と状態空間モデルの基礎』2部3・4章付近
結論 • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA
⾃⼰回帰モデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA
移動平均モデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA 係数が1より⼩のAR(1)
はMA(∞)に等しい という関係がある
ARMA • AR + MA(⾃⼰回帰移動平均)モデル • p次のARモデルとq次のMAモデルはARMA(p,q) • ⾃⼰相関をより柔軟に表現できる
d次和分過程 • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA d階差分するとはじめて定常過程になる
⾮定常過程のこと 何階差分をとれば⼗分なのかは単位根検定によっ て判断する
ARIMAモデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA d次和分過程のデータをd階差分して、
定常過程に変換した上で、ARMAを適⽤する 次数p,d,qを⽤いてARIMA(p,d,q)と表現する
ARIMAの拡張 • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性)
SARIMA • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性) ⽉単位のデータを例に取ると データを前年同期ごとにとり、「去年との相関関係」をモ デル化する
1周期がsのデータにおいて、ARIMAの次数(p,d,q)、 季節性の次数(P,D,Q)として、SARIMA(p,d,q)(P,D,Q)[s] と表現する
ARIMAX • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性) 回帰の要素をいれたARIMAといえる。 ある店舗のの売上が、近くで⼤きなイベントが開催され たために急激に増加した場合を考慮するときとか
また、曜⽇や祝⽇の効果をモデルに組み込むときも使われ ることがある。SARIMAと異なりダミー変数(祝⽇フラグ とか)で様々なパターンが作れるので、季節性のデータで もARIMAXでモデル化した⽅が楽なときもある。
まとめ
補⾜
SARIMAの数式表現 結論 導出
ARIMAXの数式表現