Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series...
Search
masso
December 17, 2020
Science
0
550
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
December 17, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
220
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.1k
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
860
分析環境紹介LT / the introduction of as my analysis env is
masso
0
110
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
masso
0
150
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
510
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.5k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.4k
Other Decks in Science
See All in Science
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
120
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
140
ほたるのひかり/RayTracingCamp10
kugimasa
1
520
大規模言語モデルの開発
chokkan
PRO
85
43k
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
130
Coqで選択公理を形式化してみた
soukouki
0
280
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
210
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
840
Machine Learning for Materials (Challenge)
aronwalsh
0
100
Introduction to Image Processing: 2.Frequ
hachama
0
470
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
320
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
120
Featured
See All Featured
Music & Morning Musume
bryan
46
6.3k
Unsuck your backbone
ammeep
669
57k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
330
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Designing Experiences People Love
moore
140
23k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Why Our Code Smells
bkeepers
PRO
336
57k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
133
33k
It's Worth the Effort
3n
184
28k
Transcript
基礎からわかる時系列分析 輪読会 第5回 〜ちょっと⽴ち⽌まって基本を学ぶ回〜
すいません、違う本の内容を紹介させてください (エクストリームすぎるだろw というツッコミ待ち) ✋
なぜ別の本を持ち出したか • 時系列分析の基本がわからなすぎて前回ついて いけなかった • 『基礎からわかる時系列分析』の場合、 AR/MA/ARMA/ARIMAあたりを丁寧に解説して いるところがなかった(そこを知りたい…) • 今回紹介する本は、そこんとこを優しく解説し
てくれてた
お品書き ① 時系列データを表現する上での基本 ② データの⽣成過程〜定常過程・⾮定常過程 ③ ARIMAモデルとはなんだ〜有⾺さんじゃないよ
時系列データを表現する上での 基本 『時系列分析と状態空間モデルの基礎』1部2章付近
学ぶ⽤語⼀覧 • ⾃⼰相関とコレログラム • 季節成分・周期成分 • トレンド • 外因性 •
ホワイトノイズ
⾃⼰相関とコレログラム ⾃⼰相関 過去の⾃分との相関。 時系列じゃない場合は、説 明変数XとYの相関Cov(x,y) とか考えるけど、時系列は、 ⾃分との相関Cov(Xt, Xt-1) を考える点が特徴といえる ⾃⼰相関係数(ACF)と
偏⾃⼰相関係数(PACF)がある コレログラム 何時点前との⾃⼰相関が強 いのかを判断するのに使わ れる作図⽅法
季節成分・周期成分 • 常にN時点前のデータと強い相関がある場合、 周期性があると⾔える • 単に、「⾃⼰相関がある」と捉えるだけで終わ らせてはいけない • 特に1年単位の周期があるもの(12ヶ⽉前と 強い相関がある)ものを季節性と呼ぶ
• 他にも週単位、⽇単位の周期性もある
トレンド • 例えば、「毎⽉の売上が20万円ずつ上昇する ような右肩上がりの業績データ」であれば、正 のトレンドがあるなどという • もう少し⼀般的な表現をするなら、「中⻑期的 なデータの単調変化(増加・減少)」とも⾔え るかも
外因性 • 外部の要因によるもの、例えば「近くでイベン トが⾏われたので売上が際⽴って⾼い⽇」の データなどは、外因性によるデータの振る舞い といえる • もう少し⼀般的な表現をするなら、「分析対象 としている『系』の外のイベントによる影響」 と⾔えそう
ホワイトノイズ • 純粋なノイズ。予測不可能と考えてよい。 • 具体的な条件は – 期待値が0 & 分散が⼀定 &
⾃⼰相関が0 • よく使われるのは、平均0で分散σ2の正規分布
時系列データの構造 時系列データ = 短期の⾃⼰相関 + 周期的変動(季節性含む) + トレンド + 外因性
+ ホワイトノイズ
データの⽣成過程 〜定常過程・⾮定常過程 『時系列分析と状態空間モデルの基礎』2部2章付近
特徴と定義 定常過程 ⾮定常過程 • 分析しやすい • 時点によらず期待値が⼀定 & 時点に よらず⾃⼰共分散・⾃⼰相関が時点差
のみに依存 • 分析しにくい • 定常過程以外の全て(現実はこっちが 多い)
定常過程が分析しやすい理由 • 基本統計量は以下のように表せる • これが時点によって変わらないので、ある区間(例えば1ヶ ⽉分)のデータから算出した期待値や分散がそのまま「特定 時点の期待値や分散の推定量」とみなせる • 定常過程データに対して(後述の)ARMAモデルが⾼い説明 能⼒を持つ
⾮定常過程のデータを扱いやすく変換する • 差分をとる→トレンドを消せる – d階差分をとると定常過程に変化するものをd次和分過程という
⾮定常過程のデータを扱いやすく変換する • 対数をとる→和が積になる。解釈内容が変わる。 時系列データ=周期的変動+トレンド+ホワイトノイズ log時系列データ=log周期的変動+logトレンド+logホワイトノイズ log(時系列データ)=log(周期的変動×トレンド×ホワイトノイズ)
ARIMAモデルとはなんだ 〜有⾺さんじゃないよ 『時系列分析と状態空間モデルの基礎』2部3・4章付近
結論 • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA
⾃⼰回帰モデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA
移動平均モデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA 係数が1より⼩のAR(1)
はMA(∞)に等しい という関係がある
ARMA • AR + MA(⾃⼰回帰移動平均)モデル • p次のARモデルとq次のMAモデルはARMA(p,q) • ⾃⼰相関をより柔軟に表現できる
d次和分過程 • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA d階差分するとはじめて定常過程になる
⾮定常過程のこと 何階差分をとれば⼗分なのかは単位根検定によっ て判断する
ARIMAモデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA d次和分過程のデータをd階差分して、
定常過程に変換した上で、ARMAを適⽤する 次数p,d,qを⽤いてARIMA(p,d,q)と表現する
ARIMAの拡張 • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性)
SARIMA • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性) ⽉単位のデータを例に取ると データを前年同期ごとにとり、「去年との相関関係」をモ デル化する
1周期がsのデータにおいて、ARIMAの次数(p,d,q)、 季節性の次数(P,D,Q)として、SARIMA(p,d,q)(P,D,Q)[s] と表現する
ARIMAX • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性) 回帰の要素をいれたARIMAといえる。 ある店舗のの売上が、近くで⼤きなイベントが開催され たために急激に増加した場合を考慮するときとか
また、曜⽇や祝⽇の効果をモデルに組み込むときも使われ ることがある。SARIMAと異なりダミー変数(祝⽇フラグ とか)で様々なパターンが作れるので、季節性のデータで もARIMAXでモデル化した⽅が楽なときもある。
まとめ
補⾜
SARIMAの数式表現 結論 導出
ARIMAXの数式表現