Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series...
Search
masso
December 17, 2020
Science
0
530
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
December 17, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
180
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.1k
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
810
分析環境紹介LT / the introduction of as my analysis env is
masso
0
100
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
masso
0
150
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
500
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.5k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.4k
Other Decks in Science
See All in Science
Snowflake上でRを使う: RStudioセットアップとShinyアプリケーションのデプロイ
ktatsuya
PRO
0
480
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1k
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
230
(2024) Livres, Femmes et Math
mansuy
0
110
Snowflakeによる統合バイオインフォマティクス
ktatsuya
PRO
0
530
WeMeet Group - 採用資料
wemeet
0
3.7k
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
380
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
200
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_LT版
hayataka88
0
990
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
620
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
220
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
450
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Building an army of robots
kneath
302
44k
Practical Orchestrator
shlominoach
186
10k
For a Future-Friendly Web
brad_frost
175
9.4k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Rails Girls Zürich Keynote
gr2m
94
13k
A better future with KSS
kneath
238
17k
Automating Front-end Workflow
addyosmani
1366
200k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
Transcript
基礎からわかる時系列分析 輪読会 第5回 〜ちょっと⽴ち⽌まって基本を学ぶ回〜
すいません、違う本の内容を紹介させてください (エクストリームすぎるだろw というツッコミ待ち) ✋
なぜ別の本を持ち出したか • 時系列分析の基本がわからなすぎて前回ついて いけなかった • 『基礎からわかる時系列分析』の場合、 AR/MA/ARMA/ARIMAあたりを丁寧に解説して いるところがなかった(そこを知りたい…) • 今回紹介する本は、そこんとこを優しく解説し
てくれてた
お品書き ① 時系列データを表現する上での基本 ② データの⽣成過程〜定常過程・⾮定常過程 ③ ARIMAモデルとはなんだ〜有⾺さんじゃないよ
時系列データを表現する上での 基本 『時系列分析と状態空間モデルの基礎』1部2章付近
学ぶ⽤語⼀覧 • ⾃⼰相関とコレログラム • 季節成分・周期成分 • トレンド • 外因性 •
ホワイトノイズ
⾃⼰相関とコレログラム ⾃⼰相関 過去の⾃分との相関。 時系列じゃない場合は、説 明変数XとYの相関Cov(x,y) とか考えるけど、時系列は、 ⾃分との相関Cov(Xt, Xt-1) を考える点が特徴といえる ⾃⼰相関係数(ACF)と
偏⾃⼰相関係数(PACF)がある コレログラム 何時点前との⾃⼰相関が強 いのかを判断するのに使わ れる作図⽅法
季節成分・周期成分 • 常にN時点前のデータと強い相関がある場合、 周期性があると⾔える • 単に、「⾃⼰相関がある」と捉えるだけで終わ らせてはいけない • 特に1年単位の周期があるもの(12ヶ⽉前と 強い相関がある)ものを季節性と呼ぶ
• 他にも週単位、⽇単位の周期性もある
トレンド • 例えば、「毎⽉の売上が20万円ずつ上昇する ような右肩上がりの業績データ」であれば、正 のトレンドがあるなどという • もう少し⼀般的な表現をするなら、「中⻑期的 なデータの単調変化(増加・減少)」とも⾔え るかも
外因性 • 外部の要因によるもの、例えば「近くでイベン トが⾏われたので売上が際⽴って⾼い⽇」の データなどは、外因性によるデータの振る舞い といえる • もう少し⼀般的な表現をするなら、「分析対象 としている『系』の外のイベントによる影響」 と⾔えそう
ホワイトノイズ • 純粋なノイズ。予測不可能と考えてよい。 • 具体的な条件は – 期待値が0 & 分散が⼀定 &
⾃⼰相関が0 • よく使われるのは、平均0で分散σ2の正規分布
時系列データの構造 時系列データ = 短期の⾃⼰相関 + 周期的変動(季節性含む) + トレンド + 外因性
+ ホワイトノイズ
データの⽣成過程 〜定常過程・⾮定常過程 『時系列分析と状態空間モデルの基礎』2部2章付近
特徴と定義 定常過程 ⾮定常過程 • 分析しやすい • 時点によらず期待値が⼀定 & 時点に よらず⾃⼰共分散・⾃⼰相関が時点差
のみに依存 • 分析しにくい • 定常過程以外の全て(現実はこっちが 多い)
定常過程が分析しやすい理由 • 基本統計量は以下のように表せる • これが時点によって変わらないので、ある区間(例えば1ヶ ⽉分)のデータから算出した期待値や分散がそのまま「特定 時点の期待値や分散の推定量」とみなせる • 定常過程データに対して(後述の)ARMAモデルが⾼い説明 能⼒を持つ
⾮定常過程のデータを扱いやすく変換する • 差分をとる→トレンドを消せる – d階差分をとると定常過程に変化するものをd次和分過程という
⾮定常過程のデータを扱いやすく変換する • 対数をとる→和が積になる。解釈内容が変わる。 時系列データ=周期的変動+トレンド+ホワイトノイズ log時系列データ=log周期的変動+logトレンド+logホワイトノイズ log(時系列データ)=log(周期的変動×トレンド×ホワイトノイズ)
ARIMAモデルとはなんだ 〜有⾺さんじゃないよ 『時系列分析と状態空間モデルの基礎』2部3・4章付近
結論 • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA
⾃⼰回帰モデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA
移動平均モデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA 係数が1より⼩のAR(1)
はMA(∞)に等しい という関係がある
ARMA • AR + MA(⾃⼰回帰移動平均)モデル • p次のARモデルとq次のMAモデルはARMA(p,q) • ⾃⼰相関をより柔軟に表現できる
d次和分過程 • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA d階差分するとはじめて定常過程になる
⾮定常過程のこと 何階差分をとれば⼗分なのかは単位根検定によっ て判断する
ARIMAモデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA d次和分過程のデータをd階差分して、
定常過程に変換した上で、ARMAを適⽤する 次数p,d,qを⽤いてARIMA(p,d,q)と表現する
ARIMAの拡張 • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性)
SARIMA • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性) ⽉単位のデータを例に取ると データを前年同期ごとにとり、「去年との相関関係」をモ デル化する
1周期がsのデータにおいて、ARIMAの次数(p,d,q)、 季節性の次数(P,D,Q)として、SARIMA(p,d,q)(P,D,Q)[s] と表現する
ARIMAX • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性) 回帰の要素をいれたARIMAといえる。 ある店舗のの売上が、近くで⼤きなイベントが開催され たために急激に増加した場合を考慮するときとか
また、曜⽇や祝⽇の効果をモデルに組み込むときも使われ ることがある。SARIMAと異なりダミー変数(祝⽇フラグ とか)で様々なパターンが作れるので、季節性のデータで もARIMAXでモデル化した⽅が楽なときもある。
まとめ
補⾜
SARIMAの数式表現 結論 導出
ARIMAXの数式表現