Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
1k
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.3k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
870
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
940
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
12k
Other Decks in Programming
See All in Programming
Portapad紹介プレゼンテーション
gotoumakakeru
1
130
管你要 trace 什麼、bpftrace 用下去就對了 — COSCUP 2025
shunghsiyu
0
480
STUNMESH-go: Wireguard NAT穿隧工具的源起與介紹
tjjh89017
0
390
令和最新版手のひらコンピュータ
koba789
14
8.1k
Claude Codeで実装以外の開発フロー、どこまで自動化できるか?失敗と成功
ndadayo
2
1.6k
MLH State of the League: 2026 Season
theycallmeswift
0
170
Understanding Ruby Grammar Through Conflicts
yui_knk
1
140
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
280
AHC051解法紹介
eijirou
0
630
TDD 実践ミニトーク
contour_gara
1
240
学習を成果に繋げるための個人開発の考え方 〜 「学習のための個人開発」のすすめ / personal project for leaning
panda_program
1
110
あのころの iPod を どうにか再生させたい
orumin
2
2.5k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How to Ace a Technical Interview
jacobian
279
23k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Gamification - CAS2011
davidbonilla
81
5.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/