Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
1k
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.3k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
860
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
930
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
12k
Other Decks in Programming
See All in Programming
ニーリーにおけるプロダクトエンジニア
nealle
0
800
git worktree × Claude Code × MCP ~生成AI時代の並列開発フロー~
hisuzuya
1
550
Flutterで備える!Accessibility Nutrition Labels完全ガイド
yuukiw00w
0
160
0626 Findy Product Manager LT Night_高田スライド_speaker deck用
mana_takada
0
160
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
2
630
地方に住むエンジニアの残酷な現実とキャリア論
ichimichi
5
1.5k
効率的な開発手段として VRTを活用する
ishkawa
0
130
Node-RED を(HTTP で)つなげる MCP サーバーを作ってみた
highu
0
120
都市をデータで見るってこういうこと PLATEAU属性情報入門
nokonoko1203
1
610
AIと”コードの評価関数”を共有する / Share the "code evaluation function" with AI
euglena1215
1
150
AIともっと楽するE2Eテスト
myohei
3
1.2k
第9回 情シス転職ミートアップ 株式会社IVRy(アイブリー)の紹介
ivry_presentationmaterials
1
290
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
Embracing the Ebb and Flow
colly
86
4.7k
Producing Creativity
orderedlist
PRO
346
40k
What's in a price? How to price your products and services
michaelherold
246
12k
A Tale of Four Properties
chriscoyier
160
23k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/