Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
940
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.1k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
830
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
890
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
12k
Other Decks in Programming
See All in Programming
『GO』アプリ バックエンドサーバのコスト削減
mot_techtalk
0
140
Amazon ECS とマイクロサービスから考えるシステム構成
hiyanger
2
520
2024年のkintone API振り返りと2025年 / kintone API look back in 2024
tasshi
0
220
Java Webフレームワークの現状 / java web framework at burikaigi
kishida
9
2.2k
Pulsar2 を雰囲気で使ってみよう
anoken
0
230
時計仕掛けのCompose
mkeeda
1
290
Conform を推す - Advocating for Conform
mizoguchicoji
3
690
DevinとCursorから学ぶAIエージェントメモリーの設計とMoatの考え方
itarutomy
1
670
AWS Lambda functions with C# 用の Dev Container Template を作ってみた件
mappie_kochi
0
240
Spring gRPC について / About Spring gRPC
mackey0225
0
220
iOSエンジニアから始める visionOS アプリ開発
nao_randd
3
130
ファインディLT_ポケモン対戦の定量的分析
fufufukakaka
0
490
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.3k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Producing Creativity
orderedlist
PRO
343
39k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
Raft: Consensus for Rubyists
vanstee
137
6.8k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
240
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/