Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
960
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.2k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
840
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
910
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
12k
Other Decks in Programming
See All in Programming
自分のために作ったアプリが、グローバルに使われるまで / Indie App Development Lunch LT
pixyzehn
1
120
Node.js, Deno, Bun 最新動向とその所感について
yosuke_furukawa
PRO
6
3k
Devin入門と最近のアップデートから見るDevinの進化 / Introduction to Devin and the Evolution of Devin as Seen in Recent Update
rkaga
7
3.9k
エンジニア未経験が最短で戦力になるためのTips
gokana
0
220
なぜselectはselectではないのか
taiyow
2
310
PsySHから紐解くREPLの仕組み
muno92
PRO
1
520
ニックトレイン登壇資料
ryotakurokawa
0
140
PHPer's Guide to Daemon Crafting Taming and Summoning
uzulla
2
1.1k
フロントエンドテストの育て方
quramy
9
2.6k
Preact、HooksとSignalsの両立 / Preact: Harmonizing Hooks and Signals
ssssota
1
750
PHPUnit 高速化テクニック / PHPUnit Speedup Techniques
pinkumohikan
1
1.2k
신입 안드로이드 개발자의 AI 스타트업 생존기 (+ Native C++ Code를 Android에서 사용해보기)
dygames
0
510
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
94
13k
Designing Experiences People Love
moore
141
23k
Optimizing for Happiness
mojombo
377
70k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Thoughts on Productivity
jonyablonski
69
4.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
51
2.4k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Scaling GitHub
holman
459
140k
Music & Morning Musume
bryan
46
6.4k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/