Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
誤差逆伝播法/machine-learning-lecture-backpropagation
Search
monochromegane
July 17, 2020
Technology
0
7.5k
誤差逆伝播法/machine-learning-lecture-backpropagation
GMOペパボ新卒研修2020 機械学習入門 補足資料#06
monochromegane
July 17, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
770
ベクトル検索システムの気持ち
monochromegane
34
11k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
190
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
260
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
930
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
570
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
970
Go言語でMac GPUプログラミング
monochromegane
1
630
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
1.1k
Other Decks in Technology
See All in Technology
IPA&AWSダブル全冠が明かす、人生を変えた勉強法のすべて
iwamot
PRO
2
220
Reach American Airlines®️ Instantly: 19 Calling Methods for Fast Support in the USA
flyamerican
1
180
NewSQLや分散データベースを支えるRaftの仕組み - 仕組みを理解して知る得意不得意
hacomono
PRO
3
230
Amplify Gen2から知るAWS CDK Toolkit Libraryの使い方/How to use the AWS CDK Toolkit Library as known from Amplify Gen2
fossamagna
1
240
VGGT: Visual Geometry Grounded Transformer
peisuke
1
620
セキュアな社内Dify運用と外部連携の両立 ~AIによるAPIリスク評価~
zozotech
PRO
0
100
〜『世界中の家族のこころのインフラ』を目指して”次の10年”へ〜 SREが導いたグローバルサービスの信頼性向上戦略とその舞台裏 / Towards the Next Decade: Enhancing Global Service Reliability
kohbis
3
1.1k
SRE不在の開発チームが障害対応と 向き合った100日間 / 100 days dealing with issues without SREs
shin1988
2
1.5k
AIの全社活用を推進するための安全なレールを敷いた話
shoheimitani
2
640
スタートアップに選択肢を 〜生成AIを活用したセカンダリー事業への挑戦〜
nstock
0
290
20250707-AI活用の個人差を埋めるチームづくり
shnjtk
6
4.1k
freeeのアクセシビリティの現在地 / freee's Current Position on Accessibility
ymrl
2
280
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Designing for Performance
lara
610
69k
How to train your dragon (web standard)
notwaldorf
96
6.1k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Being A Developer After 40
akosma
90
590k
Building Adaptive Systems
keathley
43
2.7k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Transcript
1 ペパボ研究所 三宅悠介 新卒研修 機械学習入門 補足資料#06 (2020/07/03 Update) 誤差逆伝播法
2 2 ニューラルネットワークの 構造 線形から非線形へ
3 ニューラルネットワークの構造 3 *本資料では簡単のため、バイアス項は導入しない
4 ニューラルネットワークの構造 4
5 ニューラルネットワークの構造 5
6 ニューラルネットワークの構造 6
7 ニューラルネットワークの構造 7
8 ニューラルネットワークの構造 8
9 ニューラルネットワークの構造 9
10 ニューラルネットワークの構造 10
11 ニューラルネットワークの構造 11 活性化関数
12 ニューラルネットワークの構造 12
13 ニューラルネットワークの構造 13
14 14 誤差逆伝播法 デルタ!
15 誤差関数と偏微分 15 誤差関数 パラメータごとの偏微分
16 個別のパラメータごとに偏微分するの ではなく、出力層に近い層の偏微分の 結果を前の層に渡すことで各層でのパ ラメータの偏微分を行う。 誤差信号と呼ばれる値が出力から入力 の方向へ(逆向きに)伝播していくこと から名付けられている。 誤差逆伝播法
16 誤差逆伝播法
17 出力層のパラメータの偏微分 17
18 隠れ層のパラメータの偏微分 18
19 隠れ層のδは一つ先の層のδを使って 求めることができる。 隠れ層のδ 19 隠れ層のδ
20 隠れ層のδ 20 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
21 隠れ層のδ 21 活性化関数によって異なる
22 隠れ層のδ 22 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
23 出力層(はじめの)のδ 23 Lkはyk’(z2)の合成関数 活性化関数によって異なる 誤差
24 各層における入力xと重みとの線形結 合した結果であるzを保持する。これを パラメータの更新に用いる。 誤差逆伝播法によるパラメータの更新 24 順伝播
25 誤差逆伝播法によるパラメータの更新 25 出力層の誤差またはパラメータの値と 活性化関数の偏微分を用いて各層に おけるδを求める 逆伝播
26 誤差逆伝播法によるパラメータの更新 26 δとxからパラメータを更新する 逆伝播
27 * 誤差逆伝播法 27 誤差関数に対するパラメータの偏微分 パラメータの更新
28 参考: 活性化関数の微分 28 シグモイド関数 ReLU 実際はx=0の時は微分不可
29 29 参考
30 参考文献 30 本資料における誤差逆伝播法の導出は以下の文献を参考にしました。 より詳細、発展的な説明が必要であれば、精読し、理解を深めてみてください。 - スマートニュース株式会社 立石
賢吾, やさしく学ぶ ディープラーニングがわか る数学のきほん ~アヤノ&ミオと学ぶ ディープラーニングの理論と数学、実装~, マイナビ出版, 2019年07月31日. ISBN:978-4-8399-6837-3 - 斎藤 康毅, ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理 論と実装, オライリー・ジャパン, 2016年09月, ISBN:978-4-87311-758-4 - 新納 浩幸, Chainerによる実践深層学習, オーム社, 2016年09月, ISBN:978-4-274-21934-4