Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
誤差逆伝播法/machine-learning-lecture-backpropagation
Search
monochromegane
July 17, 2020
Technology
0
7.3k
誤差逆伝播法/machine-learning-lecture-backpropagation
GMOペパボ新卒研修2020 機械学習入門 補足資料#06
monochromegane
July 17, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
ベクトル検索システムの気持ち
monochromegane
32
10k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
160
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
230
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
840
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
510
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
910
Go言語でMac GPUプログラミング
monochromegane
1
570
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
1k
迅速な学習機構を用いて逐次適応性を損なうことなく非線形性を扱う文脈付き多腕バンディット手法/extreme_neural_linear_bandits
monochromegane
0
2.2k
Other Decks in Technology
See All in Technology
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
0
110
白金鉱業Meetup_Vol.18_AIエージェント時代のUI/UX設計
brainpadpr
1
130
JPOUG Tech Talk #12 UNDO Tablespace Reintroduction
nori_shinoda
2
150
彩の国で始めよう。おっさんエンジニアから共有したい、当たり前のことを当たり前にする技術
otsuki
0
150
2025-04-24 "Manga AI Understanding & Localization" Furukawa Arata (CyberAgent, Inc)
ornew
1
190
Devinで模索する AIファースト開発〜ゼロベースから始めるDevOpsの進化〜
potix2
PRO
7
3.4k
30代からでも遅くない! 内製開発の世界に飛び込み、最前線で戦うLLMアプリ開発エンジニアになろう
minorun365
PRO
11
3k
The Tale of Leo: Brave Lion and Curious Little Bug
canalun
1
120
アジャイル脅威モデリング#1(脅威モデリングナイト#8)
masakane55
3
230
生成AIによるCloud Native基盤構築の可能性と実践的ガードレールの敷設について
nwiizo
7
970
読んで学ぶ Amplify Gen2 / Amplify と CDK の関係を紐解く #jawsug_tokyo
tacck
PRO
1
160
品質文化を支える小さいクロスファンクショナルなチーム / Cross-functional teams fostering quality culture
toma_sm
0
120
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
390
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How GitHub (no longer) Works
holman
314
140k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Optimizing for Happiness
mojombo
377
70k
Site-Speed That Sticks
csswizardry
5
500
Raft: Consensus for Rubyists
vanstee
137
6.9k
Transcript
1 ペパボ研究所 三宅悠介 新卒研修 機械学習入門 補足資料#06 (2020/07/03 Update) 誤差逆伝播法
2 2 ニューラルネットワークの 構造 線形から非線形へ
3 ニューラルネットワークの構造 3 *本資料では簡単のため、バイアス項は導入しない
4 ニューラルネットワークの構造 4
5 ニューラルネットワークの構造 5
6 ニューラルネットワークの構造 6
7 ニューラルネットワークの構造 7
8 ニューラルネットワークの構造 8
9 ニューラルネットワークの構造 9
10 ニューラルネットワークの構造 10
11 ニューラルネットワークの構造 11 活性化関数
12 ニューラルネットワークの構造 12
13 ニューラルネットワークの構造 13
14 14 誤差逆伝播法 デルタ!
15 誤差関数と偏微分 15 誤差関数 パラメータごとの偏微分
16 個別のパラメータごとに偏微分するの ではなく、出力層に近い層の偏微分の 結果を前の層に渡すことで各層でのパ ラメータの偏微分を行う。 誤差信号と呼ばれる値が出力から入力 の方向へ(逆向きに)伝播していくこと から名付けられている。 誤差逆伝播法
16 誤差逆伝播法
17 出力層のパラメータの偏微分 17
18 隠れ層のパラメータの偏微分 18
19 隠れ層のδは一つ先の層のδを使って 求めることができる。 隠れ層のδ 19 隠れ層のδ
20 隠れ層のδ 20 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
21 隠れ層のδ 21 活性化関数によって異なる
22 隠れ層のδ 22 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
23 出力層(はじめの)のδ 23 Lkはyk’(z2)の合成関数 活性化関数によって異なる 誤差
24 各層における入力xと重みとの線形結 合した結果であるzを保持する。これを パラメータの更新に用いる。 誤差逆伝播法によるパラメータの更新 24 順伝播
25 誤差逆伝播法によるパラメータの更新 25 出力層の誤差またはパラメータの値と 活性化関数の偏微分を用いて各層に おけるδを求める 逆伝播
26 誤差逆伝播法によるパラメータの更新 26 δとxからパラメータを更新する 逆伝播
27 * 誤差逆伝播法 27 誤差関数に対するパラメータの偏微分 パラメータの更新
28 参考: 活性化関数の微分 28 シグモイド関数 ReLU 実際はx=0の時は微分不可
29 29 参考
30 参考文献 30 本資料における誤差逆伝播法の導出は以下の文献を参考にしました。 より詳細、発展的な説明が必要であれば、精読し、理解を深めてみてください。 - スマートニュース株式会社 立石
賢吾, やさしく学ぶ ディープラーニングがわか る数学のきほん ~アヤノ&ミオと学ぶ ディープラーニングの理論と数学、実装~, マイナビ出版, 2019年07月31日. ISBN:978-4-8399-6837-3 - 斎藤 康毅, ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理 論と実装, オライリー・ジャパン, 2016年09月, ISBN:978-4-87311-758-4 - 新納 浩幸, Chainerによる実践深層学習, オーム社, 2016年09月, ISBN:978-4-274-21934-4