Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
誤差逆伝播法/machine-learning-lecture-backpropagation
Search
monochromegane
July 17, 2020
Technology
0
7.5k
誤差逆伝播法/machine-learning-lecture-backpropagation
GMOペパボ新卒研修2020 機械学習入門 補足資料#06
monochromegane
July 17, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
Go言語での実装を通して学ぶLLMファインチューニングの仕組み / fukuokago22-llm-peft
monochromegane
0
120
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
170
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
2.9k
ベクトル検索システムの気持ち
monochromegane
37
11k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
210
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
290
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
1k
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
680
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
1k
Other Decks in Technology
See All in Technology
EncryptedSharedPreferences が deprecated になっちゃった!どうしよう! / Oh no! EncryptedSharedPreferences has been deprecated! What should I do?
yanzm
0
490
会社紹介資料 / Sansan Company Profile
sansan33
PRO
6
380k
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
390
react-callを使ってダイヤログをいろんなとこで再利用しよう!
shinaps
2
260
2025/09/16 仕様駆動開発とAI-DLCが導くAI駆動開発の新フェーズ
masahiro_okamura
0
130
TS-S205_昨年対比2倍以上の機能追加を実現するデータ基盤プロジェクトでのAI活用について
kaz3284
1
220
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
500
データ分析エージェント Socrates の育て方
na0
6
2.2k
KotlinConf 2025_イベントレポート
sony
1
140
「全員プロダクトマネージャー」を実現する、Cursorによる仕様検討の自動運転
applism118
22
12k
メルカリIBISの紹介
0gm
0
120
AWSで始める実践Dagster入門
kitagawaz
1
740
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Facilitating Awesome Meetings
lara
55
6.5k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Transcript
1 ペパボ研究所 三宅悠介 新卒研修 機械学習入門 補足資料#06 (2020/07/03 Update) 誤差逆伝播法
2 2 ニューラルネットワークの 構造 線形から非線形へ
3 ニューラルネットワークの構造 3 *本資料では簡単のため、バイアス項は導入しない
4 ニューラルネットワークの構造 4
5 ニューラルネットワークの構造 5
6 ニューラルネットワークの構造 6
7 ニューラルネットワークの構造 7
8 ニューラルネットワークの構造 8
9 ニューラルネットワークの構造 9
10 ニューラルネットワークの構造 10
11 ニューラルネットワークの構造 11 活性化関数
12 ニューラルネットワークの構造 12
13 ニューラルネットワークの構造 13
14 14 誤差逆伝播法 デルタ!
15 誤差関数と偏微分 15 誤差関数 パラメータごとの偏微分
16 個別のパラメータごとに偏微分するの ではなく、出力層に近い層の偏微分の 結果を前の層に渡すことで各層でのパ ラメータの偏微分を行う。 誤差信号と呼ばれる値が出力から入力 の方向へ(逆向きに)伝播していくこと から名付けられている。 誤差逆伝播法
16 誤差逆伝播法
17 出力層のパラメータの偏微分 17
18 隠れ層のパラメータの偏微分 18
19 隠れ層のδは一つ先の層のδを使って 求めることができる。 隠れ層のδ 19 隠れ層のδ
20 隠れ層のδ 20 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
21 隠れ層のδ 21 活性化関数によって異なる
22 隠れ層のδ 22 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
23 出力層(はじめの)のδ 23 Lkはyk’(z2)の合成関数 活性化関数によって異なる 誤差
24 各層における入力xと重みとの線形結 合した結果であるzを保持する。これを パラメータの更新に用いる。 誤差逆伝播法によるパラメータの更新 24 順伝播
25 誤差逆伝播法によるパラメータの更新 25 出力層の誤差またはパラメータの値と 活性化関数の偏微分を用いて各層に おけるδを求める 逆伝播
26 誤差逆伝播法によるパラメータの更新 26 δとxからパラメータを更新する 逆伝播
27 * 誤差逆伝播法 27 誤差関数に対するパラメータの偏微分 パラメータの更新
28 参考: 活性化関数の微分 28 シグモイド関数 ReLU 実際はx=0の時は微分不可
29 29 参考
30 参考文献 30 本資料における誤差逆伝播法の導出は以下の文献を参考にしました。 より詳細、発展的な説明が必要であれば、精読し、理解を深めてみてください。 - スマートニュース株式会社 立石
賢吾, やさしく学ぶ ディープラーニングがわか る数学のきほん ~アヤノ&ミオと学ぶ ディープラーニングの理論と数学、実装~, マイナビ出版, 2019年07月31日. ISBN:978-4-8399-6837-3 - 斎藤 康毅, ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理 論と実装, オライリー・ジャパン, 2016年09月, ISBN:978-4-87311-758-4 - 新納 浩幸, Chainerによる実践深層学習, オーム社, 2016年09月, ISBN:978-4-274-21934-4