In the 1980's architectures consisting of two computational components communicating through a loosely-coupled network were considered advanced. For these architectures the Remote Procedure Call (RPC) communication paradigm is efficient and many authors concerned with the complexities of computational partitioning on distributed architectures quickly adopted RPC as their standard program communication paradigm which led to RPC's firm embedding in the Client-Server, Custom Instruction and Shared Memory implementation libraries that we take for granted today.
Unfortunately though, RPC is not efficient for modern Distributed and High-Performance Computing (DHPC) architectures which invariably include more than two computational components or tightly-coupled busses. In this presentation I explain the critical problems that make RPC inefficient for modern DHPC systems, introduce a possible solution to these problems called the Write-Only Architecture (WOA) and provide results and formal bounds showing the performance improvements deliverable for both homogeneous and heterogeneous DHPC systems over current RPC based implementations.