Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
組織的なインシデント対応を目指して〜成熟度評価と改善のステップ〜 / Towards an O...
Search
Narimichi Takamura
August 03, 2024
Technology
7
9.1k
組織的なインシデント対応を目指して〜成熟度評価と改善のステップ〜 / Towards an Organized Incident Response - Maturity Assessment and Improvement Steps -
SRE NEXT 2024の登壇資料です。
https://sre-next.dev/2024/schedule/#jp110
Narimichi Takamura
August 03, 2024
Tweet
Share
More Decks by Narimichi Takamura
See All by Narimichi Takamura
Observability — Extending Into Incident Response
nari_ex
2
900
インシデントキーメトリクスによるインシデント対応の改善 / Improving Incident Response using Incident Key Metrics
nari_ex
1
12k
Waroomの開発モチベーションと今後のロードマップ / Waroom development motivation and roadmap
nari_ex
1
1.7k
Engineering with Business Impact
nari_ex
2
320
How We Foster Reliability in Diversity
nari_ex
14
13k
SRE Practices in Organizations
nari_ex
16
10k
Hardening におけるトラブルシューティング / Troubleshooting in Hardening
nari_ex
1
370
私が Engineering Manager になるまでに経験してきたこと、大切にしてきたこと / Lecture materials for Introduction to Venture Business at UEC
nari_ex
0
250
運用技術者組織の設計と運用 / Design and operation of operational engineer organization
nari_ex
11
10k
Other Decks in Technology
See All in Technology
pmconf2025 - 他社事例を"自社仕様化"する技術_iRAFT法
daichi_yamashita
0
510
AIにおける自由の追求
shujisado
3
470
Eight Engineering Unit 紹介資料
sansan33
PRO
0
5.7k
Capture Checking / Separation Checking 入門
tanishiking
0
110
モバイルゲーム開発におけるエージェント技術活用への試行錯誤 ~開発効率化へのアプローチの紹介と未来に向けた展望~
qualiarts
0
290
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
130
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
1
120
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
280
こがヘンだよ!Snowflake?サービス名称へのこだわり
tarotaro0129
0
110
生成AI・AIエージェント時代、データサイエンティストは何をする人なのか?そして、今学生であるあなたは何を学ぶべきか?
kuri8ive
2
1.8k
AI 時代のデータ戦略
na0
8
3.3k
AI駆動開発によるDDDの実践
dip_tech
PRO
0
290
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Context Engineering - Making Every Token Count
addyosmani
9
460
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Speed Design
sergeychernyshev
33
1.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Raft: Consensus for Rubyists
vanstee
140
7.2k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Building an army of robots
kneath
306
46k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Transcript
None
2
גࣜձࣾTopotalʢͱΆͨΔʣ • h#ps:/ /topotal.com • SREΛओ࣠ʹϏδωεΛల։͢Δελ ʔτΞοϓ • 2ࣄۀΛӡӦ •
SRE as a Service • SaaS for SREʢWaroomʣ 3
SRE as a Service • SREʹಛԽٕͨ͠ज़ࢧԉαʔϏε • ࢧԉͷྫ • SLI/SLOͷಋೖɾӡ༻վળ
• CI/CDͷߏஙɾվળ • ΠϯγσϯτϚωδϝϯτͷվળ 4
WaroomʢϫϧʔϜʣ • h#ps:/ /waroom.com • ৫తʹΠϯγσϯτରԠΛߦ͏ͨΊ ͷSaaS • Slack AppϕʔεͰ࡞ΒΕ͓ͯΓɺීஈ
௨ΓରԠ͢Δ͚ͩͰࣗಈԽɾলྗԽ͕ Ͱ͖Δ 5
6
ΠϯγσϯτϨεϙϯεͷվળʹऔΓΉ͜ͱ͕ଟ͍ • ۩ମతʹɺҎԼͷ2ͭͷۀΛ௨ͯؔ͠ΘΓ͕͋Δ • SREaaS SRE: ސ٬ͷΠϯγσϯτϨεϙϯεڥΛվળ͢Δ • Waroom PdM:
ΠϯγσϯτϨεϙϯεSaaSͷػೳΛߟ͑Δ • ͍ͣΕͷ߹ଐਓԽΛղফ͠ɺ৫తʹରԠͰ͖Δମ੍ͮ͘ Γ͕ٻΊΒΕΔ 7
ຊߨԋͷϞνϕʔγϣϯͱ֓ཁ • ৫తͳΠϯγσϯτରԠͷ࣮ʹؔ৺͕͋Δ • ΠϯγσϯτϨεϙϯεΛվળ͢ΔࡍʹཱͭಓඪͷΑ͏ͳͷ Λͭ͘Γ͍ͨ • ͞·͟·ͳاۀͷվળ͕গ͠ͰḿΔ͖͔͚ͬʹͳΕخ͍͠ • →
ख़ϞσϧΛϕʔεʹاۀͷΠϯγσϯτϨεϙϯεڥΛ ධՁ͠ɺஈ֊తʹվળ͢Δख๏Λ͓͠·͢ 8
ΞδΣϯμ 1. ΠϯγσϯτϚωδϝϯτͷվળͷ 2. ΠϯγσϯτରԠख़Ϟσϧͱվળͷεςοϓ 3. ϑΣʔζϚΠάϨʔγϣϯͷϙΠϯτ 9
ΠϯγσϯτϨεϙϯεͷվળ͕ Ή͔͍ͣ͠ 10
՝1: اۀ͝ͱʹղܾࡦ͕ҟͳΔͨΊɺෆ࣮֬ੑ͕ߴ ͍ • اۀ͝ͱʹڥ͕ΘΓͱେ͖͘ҟͳΔ • ex. πʔϧɺϑϩʔɺϙϦγʔ...... • ͞·͟·ͳاۀSREࢧԉΛ͢ΔͨΊɺޮԽ͍͕ͨ͠௫Έॴ͕ͳ͍
• ex. AࣾͰ͏·͍ͬͨ͘ϓϥΫςΟε͕ɺBࣾͰ͏·͍͘͘ͱݶΒͳ͍ • ݁Ռͱͯ͠ɺํײͳ͘ঢ়گΛஅ͠ͳ͕Βվળ͢Δ͜ͱʹ → اۀͷঢ়گͱղܾࡦͷύλʔϯ͕େͰ͋ΓɺΞυϗοΫͳରԠʹͳͬͯ͠·͏ 11
՝2: ϕετϓϥΫςΟεͷಋೖ͕͏·͍͔͘ͳ͍έʔε͕͋Δ • ސ٬ͷ՝ײ • ϫʔΫϑϩʔ͕ఆ·͍ͬͯͳ͍ͷͰɺඋΛͯ͠৫తʹରԠ͍ͨ͠ • վળࡦ • ϕετϓϥΫςΟεʹج͍ͮͨϫʔΫϑϩʔͷಋೖ
• ex. ίϚϯμʔϩʔϧͷಋೖɺSEVͷఆٛͳͲ • ݁Ռ • ϫʔΫϑϩʔ͕ཧղ͞Εͣɺఆண͢Δ·ͰʹఆΑΓଟ͘ͷ͕͔͔࣌ؒͬͨ 12
ϕετϓϥΫςΟεͷྫ1 • ΠϯγσϯτίϚϯμʔ(IC) ɺ্ڃ ཧ৬ͷϝϯόʔͰ͋Δඞཁͳ͘ɺత ͱํੑΛ࣋ͬͯΠϯγσϯτରԠΛਐ ΊΒΕΕ୭ͰΑ͍ • ׂ୲Λ͢Δ͜ͱͰɺ৫త͔ͭޮ తʹରԠ͕Ͱ͖Δ
→ ͞·͟·ͳલఏ͕ͬͯ͡ΊͯޮՌ Λൃش͢ΔɻاۀʹΑͬͯ୯ͳΔΦʔό ʔϔουʹͳΔՄೳੑ͋Δ 1 Incident Management for Opera3ons 13
՝3: ʮ৫తͳରԠʯͷظ͕اۀʹΑͬͯҟͳΔ • ʮ৫తͳΠϯγσϯτରԠʯͱҰݴͰ͍ͬͯɺاۀ͝ͱʹ ཧঢ়ଶ͕ҟͳΔ • ΑΓख़ͨ͠৫Ͱɺ୯ʹෳਓ͕࿈ಈͯ͠ରԠ͢Δ͜ͱͰ ͳ͘ɺਓγεςϜ͕ΑΓޮతʹ࿈ಈ͠ͳ͕ΒରԠͰ͖Δ ମ੍ΛٻΊΔ͕͋Δ •
→ ख़ͨ͠৫Ͱ͋ͬͯཁٻʹݟ߹ͬͨվળΛ͍͖͍ͯͨ͠ 14
3ͭͷʹ͖߹͏ • 1: اۀͷঢ়گͱղܾࡦͷύλʔϯ͕େͰ͋ΓɺΞυϗο ΫͳରԠʹͳͬͯ͠·͏ • 2: पғΛר͖ࠐΉγʔϯͰɺվળ͕ࢥ͏Α͏ʹਐ·ͳ͍͜ ͱ͕͋Δ •
3: ʮ৫తͳରԠʯͷظ͕اۀʹΑͬͯҟͳΔ 15
3ͭͷʹ͖߹͏ • 1: اۀͷঢ়گͱղܾࡦͷύλʔϯ͕େͰ͋ΓɺΞυϗοΫͳରԠʹͳͬͯ͠·͏ • → ؇͔ʹྨ্ͨ͠ͰɺதظతͳվળͷํੑΛࣔͤΔΑ͏ʹͳΓ͍ͨ • ex. ʮࣗͨͪࠓʓʓͱ͍͏ঢ়گͳͷͰɺ□□ͷঢ়ଶΛࢦͯ͠ɺ△△✗✗ʹऔΓΈ·͠ΐ͏ʂʯ
• 2: पғΛר͖ࠐΉγʔϯͰɺվળ͕ࢥ͏Α͏ʹਐ·ͳ͍͜ͱ͕͋Δ • → ৫Λר͖ࠐΈ͘͢͢ΔͨΊʹɺஈ֊తͳվળͷεςοϓΛͭ͘Γ͍ͨ • 3: ʮ৫తͳରԠʯͷظ͕اۀʹΑͬͯҟͳΔ • → ख़ͨ͠اۀ͕ࢦ͢ཧঢ়ଶؚΊͯݴޠԽ͢Δ ্هͷ՝Λղܾ͢ΔͨΊʹɺख़ϞσϧͷߏஙΛ͢Δ͜ͱʹ 16
ख़Ϟσϧͷߏங 17
ख़Ϟσϧͱ2 ৫͕ϓϩηεΛఆΊચ࿅͢ΔͨΊͷख ஈɻҎԼΛఏڙ͢Δɻ • Կ͔Βணख͖͔͢ • ڞ௨ͷݴޠͱɺϏδϣϯͷڞ༗ • ࣮ߦͷ༏ઌॱҐ͚ͮͷΈ •
ࣗͨͪͷ৫ʹͱͬͯվળ͕ҙຯ͢ Δ͜ͱΛ໌֬ʹ͢Δํ๏ 2 ΟΩϖσΟΞ: ೳྗख़Ϟσϧ౷߹ 18
SREͷίϯςΩετΛख़ϞσϧʹऔΓࠐΉ • ΠϯγσϯτϨεϙϯεɺϞχλϦϯάσϓϩΠͳͲͷप ลྖҬͷӨڹΛड͚͍͢ • ৫ʹ͓͚ΔSREͷঢ়گΛͱʹஈ֊తʹఆ͍ٛͨ͠ • → ৴པੑͷϚΠϯυηοτͷਫ४Λ༻͍ͯख़ϨϕϧΛఆٛ ͢Δ
19
ิ: ৴པੑͷϚΠϯυηοτ 3 • ৫ͷ৴པੑΛ5ͭͷجຊతஈ֊ʹ͚ͨͷ • Absent: ৫ʹͱͬͯ৴པੑೋ࣍తͳߟྀࣄ߲ • Reac.ve:
৴པੑͷ / ϦεΫͷରԠ͕࠷ۙͷαʔϏεఀࢭʹ݁ͼ͚ ΒΕɺࢄൃతͳϑΥϩʔ͕ߦΘΕΔɻγεςϜͷͷमਖ਼ʹظతͳ ࢿ͕ߦΘΕΔ͜ͱ΄ͱΜͲͳ͍ɻ • Proac.ve: ఆظతͳ৫ϓϩηεΛ௨ͯ͡જࡏతͳ৴པੑϦεΫ͕ಛఆ͞ Εରॲ͞ΕΔ • Strategic: ͜ͷϨϕϧʹ͋Δ৫ɺΞʔΩςΫνϟɺϓϩμΫτɺϓϩη εΛମܥతʹมߋ͢Δ͜ͱͰϦεΫͷΫϥεΛཧ͢Δ • Visionary: ৴པੑͷ࠷ߴҐʹ౸ୡ͓ͯ͠Γɺ৴པੑͷ෯͍औΓΈΛ ϕετϓϥΫςΟε͓Αͼܦݧʹج͍ͮͯࣾ֎ͰਪਐͰ͖Δʢͨͱ͑ ॻྨͷ࡞ࣝͷڞ༗ͳͲʣ 3 ৫ͷ৴པੑͷϚΠϯυηοτ:Google SRE ͷݟ 20
ิ: ৴པੑͷϚΠϯυηοτ ͱϓϩμΫτͷঢ়ଶ • Absent: ։ൃதͷϓϩμΫτʹͯ·ΔՄೳੑ͕͋ Δ • Reac-ve: ϦϦʔεલ·ͨ҆ఆతظҡ࣋ϑΣʔζ
ͷϓϩμΫτʹͯ·Δ • Proac-ve: ΄ͱΜͲͷϓϩμΫτ͕͜ͷϨϕϧʹ͋Δ ͖ • Strategic: ϏδωεΫϦςΟΧϧͳχʔζΛຬͨͨ͢ Ίʹߴ͍Մ༻ੑΛඞཁͱ͢ΔϓϩμΫτʹͯ·Δ • Visionary: ͜ͷϨϕϧʹ౸ୡ͍ͯ͠ΔϓϩμΫτ΄ ͱΜͲͳ͍ 21
ࢀߟ: ϓϩμΫτͷϑΣʔζͱٻΊΒΕΔ৴པੑͷมԽ 22
ख़Ϩϕϧͷఆٛ ҎԼͷ4ஈ֊ͷఆٛΛߦͬͨ(Visionary֘͢Δέʔε͕গͳ͍ͨΊׂѪ)ɻ • Absent • ΠϯγσϯτϨεϙϯεڥ͕΄΅ະඋͰ͋ΓɺଐਓతͳରԠ͕ৗଶԽ͍ͯ͠Δঢ়ଶ • Reac*ve • ॏେͳোͷରԠํఆ·͍ͬͯΔͷͷɺΠϯγσϯτϨεϙϯεͷڥվળ΄ͱΜͲߦΘΕ͍ͯͳ͍ঢ়ଶ
• Proac*ve • ৫શମͰରԠΛߦ͏ମ੍͕͓ͬͯΓɺPre-IncidentPost-IncidentͷϑΣʔζͷऔΓΈʹΑͬͯࣄલʹϦεΫΛݮ ͍ͯ͠Δঢ়ଶ • Strategic • ͦΕͧΕͷϓϩηε͕ମܥԽɾΈԽ͞Ε͓ͯΓɺϑΟʔυόοΫϧʔϓΛճ͠ͳ͕ΒΠϯγσϯτରԠͷෛ୲Λ࠷খԽ ͠ଓ͚͍ͯΔঢ়ଶ 23
ධՁࢦඪͷࡉԽ • ΠϯγσϯτϨεϙϯεͷϓϩηεଟذʹΘͨΔͨΊɺ֤Ϩϕϧͷఆٛͩ ͚Ͱ࣮༻ੑ͕͍͠ • → ΠϯγσϯτରԠલɺରԠதɺରԠޙͷ3ϑΣʔζ͝ͱʹɺͦΕͧΕ3ͭ ͷϓϩηεΛධՁ͢Δ • Pre-Incident
ϑΣʔζ: ݕɺରԠϑϩʔɺτϨʔχϯά • Response ϑΣʔζ: ݖݶҕৡɺΈԽɺίϥϘϨʔγϣϯ • Post-Incident ϑΣʔζ: ֶशɺੳɺࣄޙλεΫ 24
ΠϯγσϯτϨεϙϯεख़Ϟσϧ 25
26
27
ΠϯγσϯτϨεϙϯεվળͷεςοϓ 1. ख़ϞσϧΛͱʹɺ9ͭͷϓϩηεʹରͯ͠ϨϕϧΛఆ͢Δ 2. 1ΛͱʹɺAbsentʙStrategicͷͲͷ͋ͨΓʹ͕ࣗͨͪҐஔ͍ͯ͠Δ ͔Λ֬ೝ͢Δ 3. ؔऀͱͱʹɺΠϯγσϯτϨεϙϯεͷ͋Δ͖ঢ়ଶΛσΟεΧο γϣϯ͢Δ 4.
վળͷํੑ͕ఆ·ͬͨΒɺ֤ϓϩηε͝ͱʹ۩ମతͳվળͷΞΫγ ϣϯΛఆΊΔ 28
վળͷεςοϓͷ۩ମྫ 1. ख़ϞσϧΛͱʹ9ͭͷϓϩηεʹରͯ͠ධՁΛߦ͏ • ex. Training: AbsentɺDetec5on: Reac5ve...... 2. 1ΛͱʹɺAbsentʙStrategicͷͲͷ͋ͨΓʹ͕ࣗͨͪҐஔ͍ͯ͠Δ͔Λ֬ೝ͢Δ
• ex. 9ͭதେΛΊ͍ͯΔϨϕϧ͋Δ͔Λ֬ೝ͢Δ 3. ؔऀͱͱʹɺΠϯγσϯτϨεϙϯεͷ͋Δ͖ঢ়ଶΛσΟεΧογϣϯ͢Δ • ex. Pre-IncidentϑΣʔζ͕શମతʹ͍͚Ͳվળͨ͠΄͏͕Α͍ͩΖ͏͔ 4. վળͷํੑ͕ఆ·ͬͨΒɺ֤ϓϩηε͝ͱʹ۩ମతͳվળͷΞΫγϣϯΛఆΊΔ • ex. ఆܕλεΫͷࣗಈԽʹऔΓ͏ 29
֘ՕॴΛ৭͚͢Δͱશମײ͕͔ͭΈ͍͢ 30
ϑΣʔζϚΠάϨʔγϣϯͷϙΠϯτ 31
Absent → Reac,ve • վળ֓ཁ • ΫϦςΟΧϧͳোͷϑΥϩʔ͕ਝʹͰ͖ ΔΑ͏ʹͳΓɺ৴པੑ্͕͢Δ • ΩʔϙΠϯτ
• ॏେͳΠϯγσϯτͷΈʹείʔϓΛߜ্ͬͨ ͰɺPre-IncidentϑΣʔζͱPost-IncidentϑΣ ʔζͷ׆ಈΛ෦తʹ͡ΊΔ͜ͱʹྗ͢Δ • ҙ • ݕͷΈ͚ͩΛඋͯ͠ɺରԠϑϩʔ ͕ະఆٛͰࣦഊʹऴΘΔࣄ͕ଟ͍ 32
Reac%ve → Proac%ve • վળ༰ • ΠϯγσϯτϨεϙϯεࣗମͷվળ͕ߦΘΕɺτΠ ϧղফ࠶ൃࢭ͕ਐΉͨΊɺ৫શମͷΠϯγσ ϯτରԠෛՙ͕ܰݮ͞Ε͡ΊΔ •
ΩʔϙΠϯτ • ֤ϓϩηεͷମܥԽͱΈԽΛओ؟ʹ্͓͍ͯ ͰɺιϑτΣΞΤϯδχΞϦϯάΛϕʔεʹվળ ׆ಈΛߦ͏ • ҙ • ৫શମΛר͖ࠐΉࢪࡦ͕૿͑ΔͨΊɺ͖ʹج ͍ͮͯҰؾʹਐΊͨΓͤͣɺ֤ϓϥΫςΟε͝ͱ ʹஈ֊తʹਐΊΔͱΑ͍ 33
Proac&ve → Strategic • վળ༰ • গͳ͍ϦιʔεͰ࠷େݶͷՁ͕ಘΔͨΊʹɺ ͜Ε·Ͱߏஙͨ͠ΈΛ͞ΒʹϒϥογϡΞ οϓ͠ɺΠϯγσϯτͷෛ୲Λ࠷খԽ͢Δ •
ΩʔϙΠϯτ • σʔλυϦϒϯͳվળ͕ϕʔεʹͳΔͨΊɺଞ ͷΩʔϝτϦΫεͱ࿈ܞ͠ͳ͕ΒɺΠϯύΫτ ͷେ͖͍ࢪࡦʹྗ͢Δ • ҙ • ߴͳઐࣝΛඞཁͱ͢Δࢪࡦ͕ଟ͍ͨΊɺ վળ׆ಈࣗମ͕ଐਓԽ͠ͳ͍Α͏ʹҙ͢Δ 34
ख़ϞσϧΛΑΓޮՌతʹ׆༻͢ΔͨΊʹ • ࠓճͷϞσϧΛ͖ͨͨͱͯ͠ɺࣗ৫͚ʹվมͯ͠ར༻͢ Δ • ex. ߲ΛݮΒ͢/૿͢ɺҰஈ֊ͣͭϨϕϧΛͣΒ͢ • ۩ମతͳΞΫγϣϯϓϥϯ͕ఆͰ͖Δ߹ه͢Δ •
৫ͷϚΠϯυηοτΛϑΣʔζϚΠάϨʔγϣϯ͢ΔͨΊʹ ɺΠϯγσϯτϨεϙϯεҎ֎ͷྖҬͷվળॏཁ 35
ҙ: దͳशख़Ϩϕϧͷݕ౼ • ͯ͢ͷ৫͕ Strategic Λࢦ͢ඞཁͳ͍ • ৴པੑͷϚΠϯυηοτಉ༷ɺϓϩμΫτͷεςʔδ৫ͷ ΧϧνϟʔʹΑͬͯɺదͳϨϕϧҟͳΔ •
ex. ϦϦʔεલͷϓϩμΫτ => ৴པੑͷ༏ઌ͕ஶ͍͘͠ ͨΊ Absent Ͱͳ͠ 36
ख़ϞσϧʹΑͬͯಘΒΕͨͷ • ؇͔ʹྨ্ͨ͠ͰɺதظతͳվળͷํੑΛࣔͤΔΑ͏ʹͳΓ͍ͨ • → ख़ϨϕϧΛϕʔεʹඪΛఆΊΔ͜ͱͰɺํੑΛڞ༗͠ͳ͕Βվળ͕ਐΊ ΒΕΔΑ͏ʹͳͬͨ • ৫Λר͖ࠐΈ͘͢͢ΔͨΊʹɺஈ֊తͳվળͷεςοϓΛͭ͘Γ͍ͨ •
→ 9ͭͷϓϩηε͝ͱʹஈ֊తʹਐΊΔ͜ͱ͕Ͱ͖ΔΑ͏ʹͳͬͨ • ख़ͨ͠اۀ͕ࢦ͢ཧঢ়ଶؚΊͯݴޠԽ͢Δ • → StrategicͷఆٛʹΑͬͯɺ(ࠓ·ͰΑΓ)ΑΓൃలతͳվળఏҊͰ͖ͦ͏(ະݕূ) 37
·ͱΊ • ΠϯγσϯτϨεϙϯεͷख़ϞσϧΛఏҊ͠·ͨ͠ • ख़ϞσϧΛ׆༻͢Δ͜ͱͰɺϓϩηε୯ҐͰͷվળͪ ΖΜɺํੑΛࣔ͠ͳ͕Βվળ͢Δํ๏Λࣔ͠·ͨ͠ • ख़ϞσϧΛΑΓ࣮ફతʹ͢ΔͨΊʹɺΑΓৄࡉͳυΩϡϝ ϯτͷඞཁੑʹݴٴ͠·ͨ͠ 38
͋Γ͕ͱ͏͍͟͝·ͨ͠ 39