Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
インシデントキーメトリクスによるインシデント対応の改善 / Improving Inciden...
Search
Narimichi Takamura
January 26, 2025
Technology
1
11k
インシデントキーメトリクスによるインシデント対応の改善 / Improving Incident Response using Incident Key Metrics
SRE Kaigi 2025の発表資料です。TTXメトリクスがメイントピックです。
https://2025.srekaigi.net/
Narimichi Takamura
January 26, 2025
Tweet
Share
More Decks by Narimichi Takamura
See All by Narimichi Takamura
Observability — Extending Into Incident Response
nari_ex
1
580
組織的なインシデント対応を目指して〜成熟度評価と改善のステップ〜 / Towards an Organized Incident Response - Maturity Assessment and Improvement Steps -
nari_ex
7
9k
Waroomの開発モチベーションと今後のロードマップ / Waroom development motivation and roadmap
nari_ex
1
1.6k
Engineering with Business Impact
nari_ex
2
320
How We Foster Reliability in Diversity
nari_ex
14
13k
SRE Practices in Organizations
nari_ex
16
10k
Hardening におけるトラブルシューティング / Troubleshooting in Hardening
nari_ex
1
360
私が Engineering Manager になるまでに経験してきたこと、大切にしてきたこと / Lecture materials for Introduction to Venture Business at UEC
nari_ex
0
250
運用技術者組織の設計と運用 / Design and operation of operational engineer organization
nari_ex
11
10k
Other Decks in Technology
See All in Technology
AIプロダクトのプロンプト実践テクニック / Practical Techniques for AI Product Prompts
saka2jp
0
120
.NET 10のBlazorの期待の新機能
htkym
0
150
re:Invent 2025の見どころと便利アイテムをご紹介 / Highlights and Useful Items for re:Invent 2025
yuj1osm
0
340
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
230
GraphRAG グラフDBを使ったLLM生成(自作漫画DBを用いた具体例を用いて)
seaturt1e
1
160
Dify on AWS 環境構築手順
yosse95ai
0
170
生成AI時代のPythonセキュリティとガバナンス
abenben
0
150
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
230
From Natural Language to K8s Operations: The MCP Architecture and Practice of kubectl-ai
appleboy
0
350
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
200
SOTA競争から人間を超える画像認識へ
shinya7y
0
610
dbtとAIエージェントを組み合わせて見えたデータ調査の新しい形
10xinc
7
1.4k
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
53
7.8k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
660
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Making Projects Easy
brettharned
120
6.4k
It's Worth the Effort
3n
187
28k
How to Think Like a Performance Engineer
csswizardry
27
2.1k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Statistics for Hackers
jakevdp
799
220k
Designing for Performance
lara
610
69k
Writing Fast Ruby
sferik
630
62k
Transcript
None
2
גࣜձࣾTopotalʢͱΆͨΔʣ • h#ps:/ /topotal.com • SREΛओ࣠ʹͨ͠ελʔτΞοϓ • 2ࣄۀΛӡӦ • SRE
as a Service • SaaS for SREʢWaroomʣ • ຊΠϕϯτͷ Pla;num εϙϯαʔ 3
SRE as a Service • topotal.com/services/sre-as-a-service • SREʹಛԽٕͨ͠ज़ࢧԉαʔϏε • ࢧԉͷྫ
• SLI/SLOͷಋೖɾӡ༻վળ • CI/CDͷߏஙɾվળ • ΠϯγσϯτϚωδϝϯτͷվળ 4
WaroomʢΘΔʔΉʣ • waroom.com • ৫తʹΠϯγσϯτରԠΛߦ͏ͨΊ ͷSaaS • Slack ϕʔεͷରԠʹ߹ΘͤͯࣗಈԽɾ লྗԽ͕Ͱ͖Δ
5
6
վળͷϑΟʔυόοΫΛߏங͢Δ 7
8
ΞδΣϯμ 1. MTTRͷ 2. ࣮ફతͳ TTX ϝτϦΫεͷఆٛ 3. TTX ϝτϦΫεͷ׆༻ྫ
4. ൃలతͳϝτϦΫε 9
1. MTTRͷ 10
MTTRʢฏۉ෮چ࣌ؒʣ ͱ • ো͕ൃੜ͔ͯ͠Βम෮·ͨ෮چ͢Δ ·Ͱͷฏۉ࣌ؒͷ͜ͱ • Mean Time To Recovery(Repair,
Resolve, Restore)ͷུ • ࢉग़ํ๏1 • MTTR = ૯मཧ࣌ؒ / ૯ނোճ • Four Keys ͷࢦඪͷҰͭͰ͋Δ 1 MTTRʢฏۉ෮چ࣌ؒʣͱʁܭࢉํ๏ͱMTBFͱͷނোɾՔಇʹ ͓͚Δؔ 11
12
SREs should move away from defaul/ng to the assump/on that
MTTX can be useful. 13
MTTRͷ༗ޮੑͷݕূ • Ծઆ • MTTR͕༗ޮͳࢦඪͳͷͰ͋ΕɺTTRΛվળʢॖʣ͢ΔͱMTTRվ ળ͞ΕΔͣ • ݕূ֓ཁ • σʔληοτΛ1:1Ͱׂ͠ɺยํTTRΛ10%վળɺ͏ยํͳʹ
͠ͳ͍ͰMTTRΛࢉग़ɾൺֱ͢Δ • MTTR͕10%վળ͞ΕΔ͔Ͳ͏͔Λ֬ೝ͢Δ 14
MTTRͷ༗ޮੑͷݕূ 1. Πϯγσϯτͷσʔληοτ2ΛϥϯμϜʹ2ׂ͢Δ 2. ยํͷσʔληοτͷम෮࣌ؒ(TTR)Λ10%ݮΒ͢ 3. ֤σʔληοτͷMTTR(ฏۉम෮࣌ؒ)Λܭࢉ͢Δ 4. σʔληοτؒͷMTTRͷࠩΛऔΔ •
diff = MTTR(unmodified) - MTTR(modified) • diff > 0 => MTTRվળ • diff < 0 => MTTRѱԽ 5. 1ʙ4Λ10ສճ܁Γฦ͢ 2 σʔληοτɺ༗໊ͳΠϯλʔ ωοτاۀ3ࣾͷΠϯγσϯτες ʔλεμογϡϘʔυ͔Βऔಘ 15
Πϯγσϯτσʔλͷಛ3 • େ͔ͳΓૣ͘ऩଋ͢Δ • Ұ෦൵ࢂͳΠϯγσϯτʢϒϥοΫ εϫϯΠϕϯτʣʹͳΔ • → ແ࡞ҝʹσʔληοτΛׂ͢Δ ͱɺ൵ࢂͳΠϯγσϯτͷภΓ͕
MTTRͷࢉग़ʹେ͖ͳӨڹΛٴ΅͢ 3 The VOID Report 16
ࢀߟ: ϒϥοΫεϫϯΠϕϯτ • ༧ظͰ͖ͳ͍ɺյ໓తͳ݁ՌΛҾ͖ى ͜͢ࣄ • ϤʔϩούͰനௗന͍ௗ͚ͩͱࢥ ΘΕ͍ͯͨ • "༧ظ͞Εͳ͍େ͖ͳग़དྷࣄ"
Λ “ϒ ϥοΫεϫϯ” ͱݺͿΑ͏ʹͳͬͨ • 2007ʹൃץ͞ΕͨʮThe Black Swanʯ͕͖͔͚ͬ 17
γϛϡϨʔγϣϯ݁Ռ ֤Πϯγσϯτͷम෮࣌ؒΛ10%ͨ͘͠ʹ͔͔ΘΒͣɺMTTR͕10%Ҏ্͘ͳΔέʔε49%ɺ50%ɺ64%ͷΈ → ͘Β͍ɺम෮࣌ؒͷॖ͕MTTRʹө͞Εͳ͍ 18
ࢀߟ: म෮࣌ؒΛมߋͤͣʹγϛϡϨʔγϣϯͨ݁͠Ռ → վળ׆ಈͷ༗ແʹ͔͔ΘΒͣɺMTTRσʔληοτ࣍ୈͰվળ or ѱԽ͢Δ 19
Incident Metrics in SRE ͷओு • γϛϡϨʔγϣϯ͔ΒΘ͔ͬͨ͜ͱ • ΠϯγσϯτނোظؒͷΒ͖͕ͭେ͖͍ͨΊɺվળ݁Ռ͕ MTTR
ʹө͞ΕͮΒ͍ • վળͯ͠ѱԽ͢Δέʔεͦͦ͋͜͜Δ • ݁ • MTTR վળͷධՁࢦඪͱͯ͠ʹཱͨͳ͍ 20
ͳʹ͕ͩͬͨͷʁ • Πϯγσϯτظؒͷมಈੑ͕ߴ͍͜ͱ • MTTRΛͳΜΒ͔ͷࢦඪʹ͢Δ͜ͱ • ࢦඪΛͱʹվળͷՌΛ֬ೝ͢Δ͜ͱ ֤ཁૉͳ͍ → తͱࢦඪ͕טΈ߹͍ͬͯͳ͍͜ͱ͕
21
σʔλੳʢԾઆݕূܕʣͷྲྀΕ 22
MTTRΛࢦඪʹ͢Δͱ͖ͷࢥߟͷྲྀΕ 23
ى͖͍ͯͨ͜ͱ: ԾઆݕূϩδοΫͷෆ߹ 24
ղܾࡦ: վળՕॴΛ໌Β͔ʹ͠ɺมಈੑΛ͑Δ 25
ղܾࡦ: վળՕॴΛ໌Β͔ʹ͠ɺมಈੑΛ͑Δ 26
ิ: TTRͷ͍ಓ ฏۉ(MTTR)େࡶ͗͢Δ → ͷൺֱ՝ൃݟͷࢳޱʹͳΔ • ex. ଈ࣌෮چͷো͕ݮগ • →
ܰඍͳোͷࣗಈ෮چͷՌʁ • → োݕͷΈʹෆ۩߹ʁ • ex. ϒϥοΫεϫϯΠϕϯτ͕૿Ճ • → ίʔυΠϯϑϥͷ࣭Լʁ 27
͜͜·Ͱͷ·ͱΊ • MTTR(෮چ࣌ؒ)σʔλมಈੑ͕ߴ͍ͨΊվળࢦඪʹෆద • վળՕॴΛ໌֬Խ͠ɺΑΓࡉ͔͍ TTX ϝτϦΫεΛར༻͢Δ͜ ͱͰɺมಈੑΛ͑Δ͜ͱ͕Մೳ → TTRΑΓࡉ͔͍ϝτϦΫεͷधཁ͕ग़ͯ͘Δ
28
2. ࣮ફతͳ TTX ϝτϦΫε 29
Waroom͕ߟ͑Δ࣮ફతͳϝτϦΫεͱ • ཏతͰ͋Δ͜ͱ • ཻ͕ࡉ͔͍͜ͱ • ऩू͕ݱ࣮తͰ͋Δ͜ͱ 30
ͲΜͳTTXϝτϦΫεΛ ऩू͢ΔͱΑ͍ͩΖ͏͔ 31
32
TTXϝτϦΫεͷ՝ײ • ੈͷதʹࣄྫ͍͔ͭ͋͘Δ͕ɺఆٛ౷Ұ͞Ε͍ͯͳ͍ • ࣄྫಉ࢜ΛΈ߹ΘͤΑ͏ͱͯ͠ɺॏෳෆ͕ੜ͡Δ • → ஶ໊ͳจݙΛϕʔεʹɺࡉ͔͘ɺཏతͳఆٛΛࢦ͢ 33
TTXϝτϦΫεఆٛͷྲྀΕ 1. ϕετϓϥΫςΟεΛֶͿ 2. ΠϯγσϯτεςʔλεΛఆٛ͢Δ 3. ΠϯγσϯτϚΠϧετʔϯ(εςʔλεͷڥ)Λఆٛ͢Δ 4. TTXϝτϦΫεΛఆٛ͢Δ 34
ϕετϓϥΫςΟεΛֶͿ 35
େ·͔ʹεςʔλεΛఆٛ͢Δ 36
37
38
ϚΠϧετʔϯΛͱʹ TTXʹམͱ͠ࠐΉ 39
40
ίϥϜ: ϝτϦΫεऩू͍ͨΜ • ࡉ͔ͳϝτϦΫεΛఆٛ͢ΔͱɺϚΠϧετʔϯΛ͑Δ͝ͱ ʹλΠϜελϯϓΛه͢Δඞཁ͕͋Δ • ରԠதʹ͍͍ͪͪਓ͕ؒଧࠁ͢Δͷඇݱ࣮త • → WaroomͰࣗಈऩू͍ͯ͠·͢
41
ରԠதͷΠϕϯτΛτϦΨʔʹࣗಈऩू͢Δྫ ϚΠϧετʔϯ ରԠதͷΠϕϯτ Detectedʢݕʣ Ξϥʔτൃੜ௨ Acknowledgedʢೝʣ νϟϯωϧ࡞ɺΠϯγσϯτىථ Iden.fiedʢղܾࡦͷಛఆʣ RunbookͷϑΣʔζ͚ʢPrecheck ͱResolu.onʣ
Recoveredʢ෮چʣ SlackͷΓͱΓ͔ΒAI͕அ͢Δ 42
3. TTXϝτϦΫεͷ׆༻ 43
ϝτϦΫεΛޮՌతʹ͏ͨΊʹ ੳͷతͱϝτϦΫεͷಛΛ߹ͤ͞Δ 44
45
ϝτϦΫεͱվળࢪࡦͷྫ TTX ՝ վળࢪࡦ TTDetectʢݕʣ ൃੜ͔ͯ͠Βݕ·Ͱʹ࣌ ͕͔͔ؒΔ ϞχλϦϯάͷվળ TTEngageʢνʔϜߏʣ ରԠνʔϜΛߏஙʹ͕࣌ؒ
͔͔Δ γϑτׂͷ໌֬ԽɺΦ ϯίʔϧ੍ͷಋೖ TTInves-gateʢௐࠪʣ োΓ͚ʹ͕͔͔࣌ؒ Δ RunbookͷμογϡϘʔυͷ උ TTFixʢम෮ʣ োͷम෮ʹ͕͔͔࣌ؒΔ ϩʔϧόοΫͷߴԽ 46
47
യવͱͨ͠ԾઆΛͱʹɺ͔Β՝Λݟ͚ͭΔ Ծઆ ৽ͨʹൃݟͨ͠՝ͷྫ ࣾͰੜ͡ΔΠϯγσϯτͰ͋ ΕTTXͷҰఆͷͣ αʔϏενʔϜʹΑͬͯύϑ ΥʔϚϯε͕ҟͳΔ ֤TTXఆʹ͍ۙͣ ʢex. TTAͳΒ10Ҏ͘Β
͍ʣ ʢ࣮ʣணख͕શମతʹ͍ɺ ղܾࡦͷಛఆ͕શମతʹ͍ 48
49
50
4. ൃలతͳϝτϦΫε 51
αʔϏε෮چҎ֎ʹॏཁͳ͜ͱ • ͜Ε·ͰΈ͖ͯͨTTXϝτϦΫεγεςϜ෮چʹয͕͋ͨͬ ͍ͯΔ • ࣮ࡍͷΠϯγσϯτରԠ γεςϜ͚ͩͰͳ͘ɺਓʹྀ͢ Δඞཁ͕͋Δ • ސ٬ରԠࣄۀӡӦ؍ͷϝτϦΫεΛ׆༻͢Δ͜ͱͰɺΤ
ϯδχΞҎ֎ͷϝϯόʔؚΊͨ৫తͳରԠͷ࣮ݱ͕ۙͮ ͘ 52
ൃలͳϝτϦΫεͷྫ ސ٬ରԠࠜຊରࡦʹযΛͯɺ͞·͟·ͳϩʔϧΛר͖ࠐΈɺ৫తͳΠϯγσϯτରԠΛՃͤ͞ Δ ϝτϦΫε໊ λʔήοτϩʔϧ త Incident Response Metrics Engineer
७ਮͳ෮چରԠͷ՝ಛఆɾվળ ࢦඪ Customer Reliability Metrics Sales, CRE ސ٬ରԠͷ՝ಛఆɾվળࢦඪ Learning Metrics Maneger, Engineer ৫ֶ͕ͼΛಘΔ·Ͱͷ׆ಈͷτ ϥοΩϯά Improvement Metrics Maneger, Engineer ࠜຊରࡦͷ࣮ࢪঢ়گͷੳ 53
·ͱΊ ҎԼͷ5Λ͓͑͠·ͨ͠ɻෆ໌͕͋Γ·ͨ͠ΒɺAsk the Speaker͓ӽ͍ͩ͘͠͞ʂ 1. MTTRվળࢦඪͱཱͯͨ͠ͳ͍ • ཧ༝: Πϯγσϯτσʔλͷมಈੑ͕ߴ͍͔Β 2.
ϝτϦΫε׆༻ɺతʙσʔλੳʹࢸΔ·Ͱͷ߹ੑ͕ॏཁ 3. มಈੑΛ͑ΔͨΊʹɺ͍ͷ۩ମԽͱϝτϦΫεͷࡉԽ͕ॏཁ 4. Waroomʹ͓͚ΔTTXϝτϦΫεͷఆٛաఔͱ׆༻ํ๏ 5. αʔϏε෮چҎ֎ʹॏཁͳϝτϦΫε 54
͍͞͝ʹ • ϝτϦΫεͷࣗಈऩूͷ͔͚͠Λ࡞Δ ͷ͍ͨΜ • ͞ΒʹɺՄࢹԽج൫ͷߏங͍ͨΜ • ͞ΒʹɺݪҼΧςΰϦҙϥϕϧΛ ͱʹ෦நग़͢Δͷ͍ͨΜ •
→ ͥͻ Waroom Λ͝׆༻͍ͩ͘͞ • ڵຯ͕༙͍ͨํ Topotal ͷϒʔε ͥͻ͓ӽ͍ͩ͘͠͞ 55
͋Γ͕ͱ͏͍͟͝·ͨ͠