Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
インシデントキーメトリクスによるインシデント対応の改善 / Improving Inciden...
Search
Narimichi Takamura
January 26, 2025
Technology
1
12k
インシデントキーメトリクスによるインシデント対応の改善 / Improving Incident Response using Incident Key Metrics
SRE Kaigi 2025の発表資料です。TTXメトリクスがメイントピックです。
https://2025.srekaigi.net/
Narimichi Takamura
January 26, 2025
Tweet
Share
More Decks by Narimichi Takamura
See All by Narimichi Takamura
Observability — Extending Into Incident Response
nari_ex
2
930
組織的なインシデント対応を目指して〜成熟度評価と改善のステップ〜 / Towards an Organized Incident Response - Maturity Assessment and Improvement Steps -
nari_ex
7
9.2k
Waroomの開発モチベーションと今後のロードマップ / Waroom development motivation and roadmap
nari_ex
1
1.7k
Engineering with Business Impact
nari_ex
2
320
How We Foster Reliability in Diversity
nari_ex
14
13k
SRE Practices in Organizations
nari_ex
16
10k
Hardening におけるトラブルシューティング / Troubleshooting in Hardening
nari_ex
1
370
私が Engineering Manager になるまでに経験してきたこと、大切にしてきたこと / Lecture materials for Introduction to Venture Business at UEC
nari_ex
0
250
運用技術者組織の設計と運用 / Design and operation of operational engineer organization
nari_ex
11
10k
Other Decks in Technology
See All in Technology
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
680
eBPFとwaruiBPF
sat
PRO
4
2.5k
乗りこなせAI駆動開発の波
eltociear
1
1.1k
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
310
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
200
AI時代の開発フローとともに気を付けたいこと
kkamegawa
0
2.7k
Snowflakeでデータ基盤を もう一度作り直すなら / rebuilding-data-platform-with-snowflake
pei0804
4
1.2k
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
630
手動から自動へ、そしてその先へ
moritamasami
0
290
世界最速級 memcached 互換サーバー作った
yasukata
0
330
直接メモリアクセス
koba789
0
290
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
260
Featured
See All Featured
How to Ace a Technical Interview
jacobian
280
24k
Embracing the Ebb and Flow
colly
88
4.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Code Reviewing Like a Champion
maltzj
527
40k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
The Pragmatic Product Professional
lauravandoore
37
7.1k
The Language of Interfaces
destraynor
162
25k
Facilitating Awesome Meetings
lara
57
6.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Transcript
None
2
גࣜձࣾTopotalʢͱΆͨΔʣ • h#ps:/ /topotal.com • SREΛओ࣠ʹͨ͠ελʔτΞοϓ • 2ࣄۀΛӡӦ • SRE
as a Service • SaaS for SREʢWaroomʣ • ຊΠϕϯτͷ Pla;num εϙϯαʔ 3
SRE as a Service • topotal.com/services/sre-as-a-service • SREʹಛԽٕͨ͠ज़ࢧԉαʔϏε • ࢧԉͷྫ
• SLI/SLOͷಋೖɾӡ༻վળ • CI/CDͷߏஙɾվળ • ΠϯγσϯτϚωδϝϯτͷվળ 4
WaroomʢΘΔʔΉʣ • waroom.com • ৫తʹΠϯγσϯτରԠΛߦ͏ͨΊ ͷSaaS • Slack ϕʔεͷରԠʹ߹ΘͤͯࣗಈԽɾ লྗԽ͕Ͱ͖Δ
5
6
վળͷϑΟʔυόοΫΛߏங͢Δ 7
8
ΞδΣϯμ 1. MTTRͷ 2. ࣮ફతͳ TTX ϝτϦΫεͷఆٛ 3. TTX ϝτϦΫεͷ׆༻ྫ
4. ൃలతͳϝτϦΫε 9
1. MTTRͷ 10
MTTRʢฏۉ෮چ࣌ؒʣ ͱ • ো͕ൃੜ͔ͯ͠Βम෮·ͨ෮چ͢Δ ·Ͱͷฏۉ࣌ؒͷ͜ͱ • Mean Time To Recovery(Repair,
Resolve, Restore)ͷུ • ࢉग़ํ๏1 • MTTR = ૯मཧ࣌ؒ / ૯ނোճ • Four Keys ͷࢦඪͷҰͭͰ͋Δ 1 MTTRʢฏۉ෮چ࣌ؒʣͱʁܭࢉํ๏ͱMTBFͱͷނোɾՔಇʹ ͓͚Δؔ 11
12
SREs should move away from defaul/ng to the assump/on that
MTTX can be useful. 13
MTTRͷ༗ޮੑͷݕূ • Ծઆ • MTTR͕༗ޮͳࢦඪͳͷͰ͋ΕɺTTRΛվળʢॖʣ͢ΔͱMTTRվ ળ͞ΕΔͣ • ݕূ֓ཁ • σʔληοτΛ1:1Ͱׂ͠ɺยํTTRΛ10%վળɺ͏ยํͳʹ
͠ͳ͍ͰMTTRΛࢉग़ɾൺֱ͢Δ • MTTR͕10%վળ͞ΕΔ͔Ͳ͏͔Λ֬ೝ͢Δ 14
MTTRͷ༗ޮੑͷݕূ 1. Πϯγσϯτͷσʔληοτ2ΛϥϯμϜʹ2ׂ͢Δ 2. ยํͷσʔληοτͷम෮࣌ؒ(TTR)Λ10%ݮΒ͢ 3. ֤σʔληοτͷMTTR(ฏۉम෮࣌ؒ)Λܭࢉ͢Δ 4. σʔληοτؒͷMTTRͷࠩΛऔΔ •
diff = MTTR(unmodified) - MTTR(modified) • diff > 0 => MTTRվળ • diff < 0 => MTTRѱԽ 5. 1ʙ4Λ10ສճ܁Γฦ͢ 2 σʔληοτɺ༗໊ͳΠϯλʔ ωοτاۀ3ࣾͷΠϯγσϯτες ʔλεμογϡϘʔυ͔Βऔಘ 15
Πϯγσϯτσʔλͷಛ3 • େ͔ͳΓૣ͘ऩଋ͢Δ • Ұ෦൵ࢂͳΠϯγσϯτʢϒϥοΫ εϫϯΠϕϯτʣʹͳΔ • → ແ࡞ҝʹσʔληοτΛׂ͢Δ ͱɺ൵ࢂͳΠϯγσϯτͷภΓ͕
MTTRͷࢉग़ʹେ͖ͳӨڹΛٴ΅͢ 3 The VOID Report 16
ࢀߟ: ϒϥοΫεϫϯΠϕϯτ • ༧ظͰ͖ͳ͍ɺյ໓తͳ݁ՌΛҾ͖ى ͜͢ࣄ • ϤʔϩούͰനௗന͍ௗ͚ͩͱࢥ ΘΕ͍ͯͨ • "༧ظ͞Εͳ͍େ͖ͳग़དྷࣄ"
Λ “ϒ ϥοΫεϫϯ” ͱݺͿΑ͏ʹͳͬͨ • 2007ʹൃץ͞ΕͨʮThe Black Swanʯ͕͖͔͚ͬ 17
γϛϡϨʔγϣϯ݁Ռ ֤Πϯγσϯτͷम෮࣌ؒΛ10%ͨ͘͠ʹ͔͔ΘΒͣɺMTTR͕10%Ҏ্͘ͳΔέʔε49%ɺ50%ɺ64%ͷΈ → ͘Β͍ɺम෮࣌ؒͷॖ͕MTTRʹө͞Εͳ͍ 18
ࢀߟ: म෮࣌ؒΛมߋͤͣʹγϛϡϨʔγϣϯͨ݁͠Ռ → վળ׆ಈͷ༗ແʹ͔͔ΘΒͣɺMTTRσʔληοτ࣍ୈͰվળ or ѱԽ͢Δ 19
Incident Metrics in SRE ͷओு • γϛϡϨʔγϣϯ͔ΒΘ͔ͬͨ͜ͱ • ΠϯγσϯτނোظؒͷΒ͖͕ͭେ͖͍ͨΊɺվળ݁Ռ͕ MTTR
ʹө͞ΕͮΒ͍ • վળͯ͠ѱԽ͢Δέʔεͦͦ͋͜͜Δ • ݁ • MTTR վળͷධՁࢦඪͱͯ͠ʹཱͨͳ͍ 20
ͳʹ͕ͩͬͨͷʁ • Πϯγσϯτظؒͷมಈੑ͕ߴ͍͜ͱ • MTTRΛͳΜΒ͔ͷࢦඪʹ͢Δ͜ͱ • ࢦඪΛͱʹվળͷՌΛ֬ೝ͢Δ͜ͱ ֤ཁૉͳ͍ → తͱࢦඪ͕טΈ߹͍ͬͯͳ͍͜ͱ͕
21
σʔλੳʢԾઆݕূܕʣͷྲྀΕ 22
MTTRΛࢦඪʹ͢Δͱ͖ͷࢥߟͷྲྀΕ 23
ى͖͍ͯͨ͜ͱ: ԾઆݕূϩδοΫͷෆ߹ 24
ղܾࡦ: վળՕॴΛ໌Β͔ʹ͠ɺมಈੑΛ͑Δ 25
ղܾࡦ: վળՕॴΛ໌Β͔ʹ͠ɺมಈੑΛ͑Δ 26
ิ: TTRͷ͍ಓ ฏۉ(MTTR)େࡶ͗͢Δ → ͷൺֱ՝ൃݟͷࢳޱʹͳΔ • ex. ଈ࣌෮چͷো͕ݮগ • →
ܰඍͳোͷࣗಈ෮چͷՌʁ • → োݕͷΈʹෆ۩߹ʁ • ex. ϒϥοΫεϫϯΠϕϯτ͕૿Ճ • → ίʔυΠϯϑϥͷ࣭Լʁ 27
͜͜·Ͱͷ·ͱΊ • MTTR(෮چ࣌ؒ)σʔλมಈੑ͕ߴ͍ͨΊվળࢦඪʹෆద • վળՕॴΛ໌֬Խ͠ɺΑΓࡉ͔͍ TTX ϝτϦΫεΛར༻͢Δ͜ ͱͰɺมಈੑΛ͑Δ͜ͱ͕Մೳ → TTRΑΓࡉ͔͍ϝτϦΫεͷधཁ͕ग़ͯ͘Δ
28
2. ࣮ફతͳ TTX ϝτϦΫε 29
Waroom͕ߟ͑Δ࣮ફతͳϝτϦΫεͱ • ཏతͰ͋Δ͜ͱ • ཻ͕ࡉ͔͍͜ͱ • ऩू͕ݱ࣮తͰ͋Δ͜ͱ 30
ͲΜͳTTXϝτϦΫεΛ ऩू͢ΔͱΑ͍ͩΖ͏͔ 31
32
TTXϝτϦΫεͷ՝ײ • ੈͷதʹࣄྫ͍͔ͭ͋͘Δ͕ɺఆٛ౷Ұ͞Ε͍ͯͳ͍ • ࣄྫಉ࢜ΛΈ߹ΘͤΑ͏ͱͯ͠ɺॏෳෆ͕ੜ͡Δ • → ஶ໊ͳจݙΛϕʔεʹɺࡉ͔͘ɺཏతͳఆٛΛࢦ͢ 33
TTXϝτϦΫεఆٛͷྲྀΕ 1. ϕετϓϥΫςΟεΛֶͿ 2. ΠϯγσϯτεςʔλεΛఆٛ͢Δ 3. ΠϯγσϯτϚΠϧετʔϯ(εςʔλεͷڥ)Λఆٛ͢Δ 4. TTXϝτϦΫεΛఆٛ͢Δ 34
ϕετϓϥΫςΟεΛֶͿ 35
େ·͔ʹεςʔλεΛఆٛ͢Δ 36
37
38
ϚΠϧετʔϯΛͱʹ TTXʹམͱ͠ࠐΉ 39
40
ίϥϜ: ϝτϦΫεऩू͍ͨΜ • ࡉ͔ͳϝτϦΫεΛఆٛ͢ΔͱɺϚΠϧετʔϯΛ͑Δ͝ͱ ʹλΠϜελϯϓΛه͢Δඞཁ͕͋Δ • ରԠதʹ͍͍ͪͪਓ͕ؒଧࠁ͢Δͷඇݱ࣮త • → WaroomͰࣗಈऩू͍ͯ͠·͢
41
ରԠதͷΠϕϯτΛτϦΨʔʹࣗಈऩू͢Δྫ ϚΠϧετʔϯ ରԠதͷΠϕϯτ Detectedʢݕʣ Ξϥʔτൃੜ௨ Acknowledgedʢೝʣ νϟϯωϧ࡞ɺΠϯγσϯτىථ Iden.fiedʢղܾࡦͷಛఆʣ RunbookͷϑΣʔζ͚ʢPrecheck ͱResolu.onʣ
Recoveredʢ෮چʣ SlackͷΓͱΓ͔ΒAI͕அ͢Δ 42
3. TTXϝτϦΫεͷ׆༻ 43
ϝτϦΫεΛޮՌతʹ͏ͨΊʹ ੳͷతͱϝτϦΫεͷಛΛ߹ͤ͞Δ 44
45
ϝτϦΫεͱվળࢪࡦͷྫ TTX ՝ վળࢪࡦ TTDetectʢݕʣ ൃੜ͔ͯ͠Βݕ·Ͱʹ࣌ ͕͔͔ؒΔ ϞχλϦϯάͷվળ TTEngageʢνʔϜߏʣ ରԠνʔϜΛߏஙʹ͕࣌ؒ
͔͔Δ γϑτׂͷ໌֬ԽɺΦ ϯίʔϧ੍ͷಋೖ TTInves-gateʢௐࠪʣ োΓ͚ʹ͕͔͔࣌ؒ Δ RunbookͷμογϡϘʔυͷ උ TTFixʢम෮ʣ োͷम෮ʹ͕͔͔࣌ؒΔ ϩʔϧόοΫͷߴԽ 46
47
യવͱͨ͠ԾઆΛͱʹɺ͔Β՝Λݟ͚ͭΔ Ծઆ ৽ͨʹൃݟͨ͠՝ͷྫ ࣾͰੜ͡ΔΠϯγσϯτͰ͋ ΕTTXͷҰఆͷͣ αʔϏενʔϜʹΑͬͯύϑ ΥʔϚϯε͕ҟͳΔ ֤TTXఆʹ͍ۙͣ ʢex. TTAͳΒ10Ҏ͘Β
͍ʣ ʢ࣮ʣணख͕શମతʹ͍ɺ ղܾࡦͷಛఆ͕શମతʹ͍ 48
49
50
4. ൃలతͳϝτϦΫε 51
αʔϏε෮چҎ֎ʹॏཁͳ͜ͱ • ͜Ε·ͰΈ͖ͯͨTTXϝτϦΫεγεςϜ෮چʹয͕͋ͨͬ ͍ͯΔ • ࣮ࡍͷΠϯγσϯτରԠ γεςϜ͚ͩͰͳ͘ɺਓʹྀ͢ Δඞཁ͕͋Δ • ސ٬ରԠࣄۀӡӦ؍ͷϝτϦΫεΛ׆༻͢Δ͜ͱͰɺΤ
ϯδχΞҎ֎ͷϝϯόʔؚΊͨ৫తͳରԠͷ࣮ݱ͕ۙͮ ͘ 52
ൃలͳϝτϦΫεͷྫ ސ٬ରԠࠜຊରࡦʹযΛͯɺ͞·͟·ͳϩʔϧΛר͖ࠐΈɺ৫తͳΠϯγσϯτରԠΛՃͤ͞ Δ ϝτϦΫε໊ λʔήοτϩʔϧ త Incident Response Metrics Engineer
७ਮͳ෮چରԠͷ՝ಛఆɾվળ ࢦඪ Customer Reliability Metrics Sales, CRE ސ٬ରԠͷ՝ಛఆɾվળࢦඪ Learning Metrics Maneger, Engineer ৫ֶ͕ͼΛಘΔ·Ͱͷ׆ಈͷτ ϥοΩϯά Improvement Metrics Maneger, Engineer ࠜຊରࡦͷ࣮ࢪঢ়گͷੳ 53
·ͱΊ ҎԼͷ5Λ͓͑͠·ͨ͠ɻෆ໌͕͋Γ·ͨ͠ΒɺAsk the Speaker͓ӽ͍ͩ͘͠͞ʂ 1. MTTRվળࢦඪͱཱͯͨ͠ͳ͍ • ཧ༝: Πϯγσϯτσʔλͷมಈੑ͕ߴ͍͔Β 2.
ϝτϦΫε׆༻ɺతʙσʔλੳʹࢸΔ·Ͱͷ߹ੑ͕ॏཁ 3. มಈੑΛ͑ΔͨΊʹɺ͍ͷ۩ମԽͱϝτϦΫεͷࡉԽ͕ॏཁ 4. Waroomʹ͓͚ΔTTXϝτϦΫεͷఆٛաఔͱ׆༻ํ๏ 5. αʔϏε෮چҎ֎ʹॏཁͳϝτϦΫε 54
͍͞͝ʹ • ϝτϦΫεͷࣗಈऩूͷ͔͚͠Λ࡞Δ ͷ͍ͨΜ • ͞ΒʹɺՄࢹԽج൫ͷߏங͍ͨΜ • ͞ΒʹɺݪҼΧςΰϦҙϥϕϧΛ ͱʹ෦நग़͢Δͷ͍ͨΜ •
→ ͥͻ Waroom Λ͝׆༻͍ͩ͘͞ • ڵຯ͕༙͍ͨํ Topotal ͷϒʔε ͥͻ͓ӽ͍ͩ͘͠͞ 55
͋Γ͕ͱ͏͍͟͝·ͨ͠