Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を理論から真剣に取り組んでみた件 その2:線形化に挑戦しよう!
Search
NearMeの技術発表資料です
PRO
August 18, 2023
Science
0
150
機械学習を理論から真剣に取り組んでみた件 その2:線形化に挑戦しよう!
カーネル法を用いて、線型の形で最小化問題に挑むことができるようにする方法についてです。今回では、多項式回帰について適用しています。
NearMeの技術発表資料です
PRO
August 18, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
観察研究における因果推論
nearme_tech
PRO
1
17
React
nearme_tech
PRO
2
19
Architecture Decision Record (ADR)
nearme_tech
PRO
1
770
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
25
Fractional Derivative!
nearme_tech
PRO
1
24
GitHub Projectsにおける チケットの ステータス更新自動化について
nearme_tech
PRO
1
38
2つの曲線を比較する方法ってあるの? 〜フレシェ距離を試してみた〜 with Python
nearme_tech
PRO
1
160
Constrained K-means Clustering (クラスタサイズの制限をしたK-means法) を調べてみた
nearme_tech
PRO
1
72
VRPの近傍操作SWAP*について調べてみた
nearme_tech
PRO
1
82
Other Decks in Science
See All in Science
Machine Learning for Materials (Lecture 7)
aronwalsh
0
800
Snowflake上でRを使う: RStudioセットアップとShinyアプリケーションのデプロイ
ktatsuya
0
350
Machine Learning for Materials (Lecture 9)
aronwalsh
0
200
Raccoon Roundworm
uni_of_nomi
0
140
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
17
6.7k
最適化超入門
tkm2261
13
3.2k
(Forkwell Library #48)『詳解 インシデントレスポンス』で学び倒すブルーチーム技術
scientia
2
1.3k
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
430
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
130
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
3
190
Mechanistic Interpretability の紹介
sohtakahashi
0
260
KDD2023学会参加報告
tereka114
2
470
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
787
250k
Fontdeck: Realign not Redesign
paulrobertlloyd
81
5.2k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.3k
How STYLIGHT went responsive
nonsquared
95
5.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
32k
For a Future-Friendly Web
brad_frost
174
9.3k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
92
16k
Thoughts on Productivity
jonyablonski
67
4.2k
Web Components: a chance to create the future
zenorocha
310
42k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
39
2.1k
Transcript
0 機械学習を理論から真剣に取り組んでみた件 その2:線形化に挑戦しよう! 2023-08-18 第56回NearMe技術勉強会 Asahi Kaito
1 前回のスライドの復習から始めます
2 1. 回帰について 1-1. 線形な単回帰と重回帰 • 単回帰 ◦ 1つの変数 x
に依存してある従属変数 y が関係あると仮定する ◦ 線形な単回帰では、以下の関係 (1) を仮定、ただしci (i=0, 1)は定数 ◦ 問題 → ci (i=0, 1)の決定!!
3 1. 回帰について 1-1. 線形な単回帰と重回帰 • 単回帰 ◦ 問題 →
ci (i=0, 1)の決定(最適な直線を引こう!)!!
4 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 訓練データ を用いて、以下の誤差関数を最小化できるci
(i=0, 1)を求める。
5 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 連立方程式を行列で表現して...
6 1. 回帰について 1-1. 線形な単回帰と重回帰 • 線形な単回帰の基本的な解法 ◦ 答え(係数行列の逆行列が存在すれば)
7 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ 複数の変数 xi
(i=1, 2, 3, …, d) に依存している従属変数 y が関係あると仮定する ◦ 線形な重回帰では、以下の関係 (1) を仮定、ただしci (i=0, 1, 2, …, d)は定数 ◦ 問題 → ci (i=0, 1, 2, …, d) の決定!!
8 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ これを、訓練データ分計算する必要があるので、さらに行列に拡張する
9 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ ここでも、二乗誤差を計算してみる
10 1. 回帰について 1-1. 線形な単回帰と重回帰 • 重回帰 ◦ ベクトルで微分を行って、この値が0となるとき、 これが存在すれば
11 1. 回帰について 1-2. 非線形な単回帰と重回帰 • 非線形とは ◦ 説明変数が1次以外のものが含まれている ◦
例1: ◦ 例2: → ものによっては、線形のときのようにうまくいかないものも... → なんとか線形化できないか?
12 2回目:線形化手法 〜カーネル法〜
13 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-1. カーネル関数とは • kが集合X上の2変数関数 •
以下の2つを満たすとき、kは集合X上のカーネル関数という (1) (2)
14 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-2. カーネル関数の必要性 • 次元を上げることができる ◦
どういうこと? ▪ k(x, y)の分布は、x, yが実数であれば、3次元に分布する(z=k(x, y)) ▪ 高次元化することで、分類がより明確になることがある
15 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-3. カーネル関数の例 • 以下の2つのものは、カーネル関数の例 (1)
(2)
16 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-4. カーネル関数の特徴 • カーネル関数の和や積も、カーネル関数になる (1)
(2)
17 2. 線形化手法 〜カーネル法〜 2-1. カーネル関数について 2-1-4. カーネル関数の特徴 • これらを組み合わせて、カーネル関数を構築していく→どんなものがあるのかな? (1)
(2) (3) (4)
18 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう
19 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (1)
20 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (1)
21 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (1)
22 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (1)
23 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (2)
24 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の構築 2-2-1. カーネル関数の具体例 • 以下の関数(ガウスカーネル)がカーネル関数であることを示しましょう (2)
25 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) 入力データ 出力データ 以下を最小にする次数が d
以下の多項式 f を見つけよ。
26 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) 適当なベクトル 以下の多項式 fv の次数は
d 以下となる。
27 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) で張られる空間への直交射影 P を用いると、
28 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) よって、以下のようにベクトル v を設定して良い!
29 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰)
30 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰)
31 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) → 係数 c を分離することができた!! カーネル関数
32 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰)
33 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰) 入力データ 出力データ 以下を最小にする次数が d
以下の多項式 f を見つけよ。
34 2. 線形化手法 〜カーネル法〜 2-2. カーネル関数の利用(多項式回帰)
35 2. 線形化手法 〜カーネル法〜 2-3. カーネル関数の実践(多項式回帰) To Colab : https://colab.research.google.com/drive/1pGGa5ui-RxsKLNi5Wb50zVLyn3Hbx4Dk?usp=sharing
36 次回 少しステップアップ!カーネル回帰
37 参考図書 http://www.rokakuho.co.jp/data/books/0171.html http://www.rokakuho.co.jp/data/books/0172.html
38 Thank you