Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介: IRのためのパラメータチューニング / ir-tuning
Search
Masahiro Nomura
October 31, 2020
Research
0
480
論文紹介: IRのためのパラメータチューニング / ir-tuning
Masahiro Nomura
October 31, 2020
Tweet
Share
More Decks by Masahiro Nomura
See All by Masahiro Nomura
ランダム欠損データに依存しない推薦システムのバイアス除去 / towards-resolving-propensity-contradiction-in-offline-recommender-learning
nmasahiro
0
270
転移学習によるハイパーパラメータ最適化の高速化 / warm_starting_cma
nmasahiro
0
2.2k
論文紹介: Sample Reuse via Importance Sampling in Information Geometric Optimization / sample_reuse_igo
nmasahiro
0
260
機械学習における ハイパーパラメータ最適化の理論と実践 / hpo_theory_practice
nmasahiro
30
40k
論文紹介 : Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
nmasahiro
1
710
広告とAI(とハイパーパラメータ最適化) / Ad with AI
nmasahiro
1
2k
Other Decks in Research
See All in Research
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
210
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
10
4.2k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
520
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
530
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
410
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
190
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
670
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
1k
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
Featured
See All Featured
Facilitating Awesome Meetings
lara
55
6.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Writing Fast Ruby
sferik
628
62k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
810
Docker and Python
trallard
46
3.6k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Transcript
論文紹介 - IRのためのパラメータチューニング - IR Reading (2020/10/31) 株式会社サイバーエージェント 野村 将寛
Bayesian Optimization for Optimizing Retrieval Systems
どんな論文? • 著者 : Dan Li, Evangelos Kanoulas (Univ. of
Amsterdam) • 出典 : WSDM’18 • 要約 : ◦ 情報検索システムには多数のハイパーパラメータが存在 ◦ チューニングにベイズ最適化を利用し実験で性能を確認
IRにおけるハイパーパラメータの重要性 • IRにはチューニングすべきハイパーパラメータが多数存在 ◦ stopwords lists ◦ stemming methods ◦
retrieval model ◦ k1 and b values in BM25 ◦ number of top-ranked documents to consider ◦ number of query expansion terms • ハイパーパラメータの値によって検索の性能が大きく変わる
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
一般的なチューニングの手順 k1 評価値を計算 BM25 b
Black-Box関数 f(x) x • 中身がBlack-Boxな関数と見なすことができる • チューニングはBlack-Box最適化によって行うことができる
チューニングのためのBlack-Box最適化手法 • Grid Search • Random Search • ベイズ最適化 ◦
SOTAなハイパーパラメータのチューニング手法 ◦ OptunaなどのOSSから利用可能
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
ベイズ最適化 (Gaussian Process Expected Improvement) 1. ガウス過程によりfを予測 2. E[改善量]が最大の点を選択 3.
2.で得られた点を評価 4. 1.〜3.を繰り返す
実験 • データセット : TREC • Pyndri (IndriのPython Interface) を使用
• ハイパーパラメータ : 2変数 & 18変数 ◦ 2変数 : two stage smoothingのλとμ ◦ 18変数 : stopper, stemmer, retrieval modelなど • 評価指標 ◦ MAP (Mean Average Precision) ◦ NDCG (Normalized Discounted Cumulative Gain) ◦ MRR (Mean reciprocal rank)
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した 異なる滑らかさの仮定
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
結果 • Manual Search (デフォルトパラメータ) よりは改善 • 2変数 : Random
Searchとベイズ最適化はあまり変わらない • 18変数 : ベイズ最適化の方が(少し)良い性能を示した
Parameter Tuning in Personal Search Systems
どんな論文? • 著者 : Suming J. Chen et al. (Google)
• 出典 : WSDM’20 • 要約 : ◦ 個人データの検索だとクエリとドキュメントのログが非公開 ▪ オフラインでのチューニングができない ◦ 一方でオンラインA/Bテストはユーザ体験を損なう可能性 ◦ 部分的なログしかないデータを使ったチューニングを提案
White Box System • 関数についての情報が全て得られているシステム (強い仮定) • オフライン実験にてパラメータをチューニングすることが可能
Black Box System • 関数の中身の情報が全く得られないシステム • queryとdocが分からないため,オフライン実験は不可能 ◦ 高コストなA/Bテストを行う必要がある
Grey Box System (Main Focus) • White BoxとBlack Boxの中間 ◦
関数の中身の情報が部分的に得られているシステム
最適化の手順 1. サブスコア(緑枠)を推論する 2. 最終スコアと相関の高いサブスコアを特定 する 3. そのサブスコアのパラメータを最適化
実験 • GMail (約100万クエリ) とGoogle Drive (約25万クエリ) で実験 • サービスの特性的に、実際のDAGの構造は明かせない
• 評価手順 ◦ Grey Box : オフラインにおいてパラメータを選択後オンラインで評価 ◦ Black Box : オフライン評価ができないためオンラインで数試行評価 • 評価指標 ◦ ACP (Average Click Position) ◦ CTR (Click-Through Rate) ◦ MRR (Mean Reciprocal Rank)
結果 • 特にDriveで有意に改善 • Grey Box • Black Box •
性能は悪化 • (実質ランダムサーチなので妥当)
ハイパーパラメータ最適化の参考資料 • 機械学習におけるハイパーパラメータ最適化の理論と実践 ◦ https://speakerdeck.com/nmasahiro/hpo-theory-practice ◦ PyConJP 2019 発表スライド ◦
チューニングの基本 + ガイドライン (手法の選択、おすすめOSSなど) • 機械学習におけるハイパパラメータ最適化手法:概要と特徴 ◦ https://search.ieice.org/bin/summary.php?id=j103-d_9_615 ◦ 電子情報通信学会論文誌 (2020/09公開; オープンアクセス) ◦ より踏み込んだガイドラインを提示