Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Hardness-Aware Deep Metric Learning [CVPR ...
Search
hyodo
June 10, 2019
Technology
0
510
論文紹介 Hardness-Aware Deep Metric Learning [CVPR 2019]
研究室のゼミで"Deep Metric Learning"というタイトルで発表した資料の一部になります。ご指摘や議論等お待ちしております。
Twitter @onysuke
hyodo
June 10, 2019
Tweet
Share
More Decks by hyodo
See All by hyodo
The Impact of Advertising along the Conversion Funnel
onysuke
2
1.5k
Can offline stores drive online sales?
onysuke
0
1.4k
SizeFlags: Reducing Size and Fit Related Returns in Fashion E-Commerce
onysuke
0
850
意思決定のための機械学習
onysuke
1
980
Mixture of Expertsに関する文献調査
onysuke
1
1.9k
Other Decks in Technology
See All in Technology
SaaS公式MCPサーバーをリリースして得た学び
kawamataryo
1
300
経済メディア編集部の実務に小さく刺さるAI / small-ai-with-editorial
nkzn
2
240
LLM アプリケーションのためのクラウドセキュリティ - CSPM の実装ポイント-
osakatechlab
0
370
20 Years of Domain-Driven Design: What I’ve Learned About DDD
ewolff
1
310
OPENLOGI Company Profile for engineer
hr01
1
26k
伝わるコードレビュー
abenben
1
100
Aspire をカスタマイズしよう & Aspire 9.2
nenonaninu
0
380
Cursorを全エンジニアに配布 その先に見据えるAI駆動開発の未来 / 2025-05-13-forkwell-ai-study-1-cursor-at-loglass
itohiro73
2
420
Part1 GitHubってなんだろう?その2
tomokusaba
2
720
続・やっぱり余白が大切だった話
kakehashi
PRO
2
310
コードや知識を組み込む / Incorporating Codes and Knowledge
ks91
PRO
0
170
非root化Androidスマホでも動く仮想マシンアプリを試してみた
arkw
0
120
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
790
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.6k
Faster Mobile Websites
deanohume
307
31k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
105
19k
Speed Design
sergeychernyshev
29
930
Thoughts on Productivity
jonyablonski
69
4.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
23
2.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
5
570
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
Transcript
)BSEOFTT"XBSF%FFQ.FUSJD-FBSOJOH $7130SBM 8FO[IBP ;IFOH ;IBPEPOH $IFO +JXFO -V +JF ;IPV
%FQBSUNFOUPG"VUPNBUJPO 5TJOHIVB6OJWFSTJUZ $IJOB FUD 1
֓ཁ 2 ɾ/FHBUJWFTBNQMFͷқΛௐ͢ΔϑϨʔϜϫʔΫ )%.- )BSEOFTT"XBSF%FFQ.FUSJD-FBSOJOH ΛఏҊ /FHBUJWFTBNQMFͷқΛજࡏ্ۭؒͷઢܗิؒʹΑΓௐ ֶशঢ়گʹదͳ͠͞ͷOFHBUJWFαϯϓϧΛੜ͢Δ
എܠ • /FHBUJWFTBNQMJOHॏཁͳ • ఏҊ͞Ε͍ͯΔख๏ͷଟ͘ɼֶशΛଅਐ͢Δ ͠ ͍ /FHBUJWFΛͲ͏બ͢Δ͔ʹযΛ͍͋ͯͯͨ ‑ Ұ෦ͷTBNQMFΛऔΓଓ͚Δ͜ͱʹͳΓɼજࡏۭؒͷେ
ہతͳܗΛଊ͑Δ͜ͱ͕Ͱ͖͍ͯͳ͍ PWFSGJUUJOH 3
4 ఏҊख๏֓આ ᶃ )BSEBXBSFGFBUVSFTZOUIFTJT ΞϯΧʔʹ͚ۙͮͨOFHBUJWF ! Λੜ ᶄ )BSEOFTTBOE-BCFM1SFTFSWJOHGFBUVSFTZOUIFTJT
ੜͨ͠OFHBUJWF ! Λ ͷϥϕϧͱಉ͡ʹͳΔΑ͏ʹඍௐ ᶃ ᶄ ! " = "
5 .BOJGPME $MBTT" ఏҊख๏֓આ ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
6 .BOJGPME $MBTT" : → GFBUVSFTQBDF͔Β FNCFEEJOHTQBDF NFUSJDTQBDF ʹࣹӨ ఏҊख๏֓આ
ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
7 .BOJGPME $MBTT" & ! = + " ! −
" ∈ [0,1] ҎԼͷઢܗิؒʹΑΓ ʹ͚ۙͮͨΑΓ͍͠ ̂ Λੜ ఏҊख๏֓આ ᶃ)BSEBXBSFGFBUVSFTZOUIFTJT .BOJGPME $MBTT#
8 Hard-aware feature .BOJGPME $MBTT" l% !ͱ!͕ಉϥϕϧz อূ͞Ε͍ͯͳ͍ ˣ !ͱಉϥϕϧʹ
ͳΔΑ͏ͳ( !ΛϚοϓ ఏҊख๏֓આ ᶄ)BSEOFTTBOE-BCFM1SFTFSWJOHGFBUVSFTZOUIFTJT : → .BOJGPME $MBTT#
ఏҊϑϨʔϜϫʔΫ )%.- 9 : → : → .FUSJDOFUXPSL "VHNFOUFS HLP(Hardness-and-Label-Preserving)
Generator Network "VHNFOUFS )-1(FOFSBUPS/FUXPSL
"VHNFOUFS 10 : → : → .FUSJDOFUXPSL "VHNFOUPS & !
= + " ! − , "∈ 0,1 … (1) " = + + 1 − # , ! , , ! > # 1 , , ! ≤ # , ∈ 0,1 … (2) ; " ∈ $! $ ," , 1 ͱͯ͠ , ! = ! − ' % ! = + [ , ! + 1 − #] "! $ ," , , ! > # … (3) ' ! = * + [ ! " #!"# , ! + 1 − ! " #!"# $] ! − , ! , , ! > $ ! , , ! ≤ $ … (4) % = 0ͷͱ͖' ! = ͱͳͬͯ͠·͏ʜ ʹ Λೖ͢Δͱ = ! # $%&'ͱͯ͠
"VHNFOUFSֶशঢ়گʹԠͨ͡қͷOFHBUJWFΛੜ ; % # = ' + [ # $
%&'( , # + 1 − # $ %&'( &] # − , # , , # > & # , , # ≤ & … (4) '() ʜͭલͷFQPDIͷ"WFSBHFNFUSJDMPTT FY5SJQMFUMPTT 11 @AB খ େ # $ %&'( 0 1 % ! = + $! $ ," (! − ) % ! = ! % !ͷқ easy hard MPTTͷେ͖͞ ֶशঢ়گ ʹԠͯ͡ੜ͢ΔOFHBUJWFͷқΛௐ
)-1(FOFSBUPS/FUXPSL 12 : → : → "VHNFOUPS HLP(Hardness-and-Label-Preserving) Generator Network
9:; = <:=>; + λ?>@A = − B C + λ?>@A () , ) l% #ͱ#͕ಉϥϕϧzอূ͞Ε͍ͯͳ͍ ⇒ #ͱಉϥϕϧʹͳΔΑ͏ͳE #ΛϚοϓ HFOFSBUPS: → PCKFDUJWFGVODUJPO )-1(FOFSBUPS /FUXPSL &OD %FD ͱͯ͠ͷ੍߲ ݩͷϥϕϧ Λอূ͢Δ
.FUSJDOFUXPSL PCKFDUJWFGVODUJPO .FUSJDOFUXPSL 13 : → : → .FUSJDOFUXPSL "VHNFOUFS
HLP(Hardness-and-Label-Preserving) Generator Network EFGHIJ = ! K L!"#E + 1 − ! K L!"# MNO = ! K L!"#() + 1 − ! K L!"# (; ) NFUSJDMPTT FY5SJQMFUMPTT /QBJSMPTT ݩͷσʔλର ੜͨ͠σʔλର ৴པͰ͖Δ 㱺 ੜͨ͠σʔλର ৴པͰ͖ͳ͍ 㱺 ݩͷσʔλର HFOFSBUPS ͕ ͷNFUSJDMPTTʹॏ͖Λ͓͘
$6#σʔληοτ ௗͷը૾ छྨ ܭ ຕ 5SBJO ຕ छྨ 5FTU
ຕ छྨ 5SBJOͱ5FTUʹಉ͡Ϋϥεͷը૾ଘࡏ͠ͳ͍ 㱺 ;FSPTIPUTFUUJOH 14
࣮ݧઃఆ DMVTUFSJOHSFUSJFWBMUBTL 15 $MVTUFSJOHUBTL ධՁࢦඪ /.* ਖ਼نԽ૬ޓใྔ ' 3FDBMM!, 5FTU
5SBJO Clustering task Retrieval task 3FUSJFWBMUBTL ֤UFTUը૾ RVFSZ ʹରͯ͠ ,ίۙͷΛநग़͠ɼ ಉ͡Ϋϥε͕ଐ͍ͯ͠Ε TDPSFFMTFTDPSF
.FUSJDMPTTͷछྨʹΑΒͣ )%.-Ͱࣝผతͳಛྔ͕ಘΒΕͨ 16
!"#$ ֶ͕शʹ͓͍ͯॏཁͳཁૉͰ͋Δ 17 HFJQO ͳ͠ͰϕʔεϥΠϯΛ্ճΔ 㱺 *+,- ͚ͩͰݱ࣮తͳಛදݱͷϚοϐϯά͕ՄೳͰ͋ͬͨͱߟ͑ΒΕΔ
ΫϥεͷมԽ എܠ ࢹ র໌ FUD ΫϥεؒͷΘ͔ͣͳҧ͍ ௗͷ༷ 18 ʹରॲ