Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Indexの種類
Search
patorash
January 25, 2020
Technology
1
760
Indexの種類
データベースのIndexの種類について、代表的なものについて整理しました。
patorash
January 25, 2020
Tweet
Share
More Decks by patorash
See All by patorash
情報共有戦略と戦術
patorash
1
1.2k
exists?で起きるN+1問題にSetで対処する
patorash
0
760
DBのメタデータを管理する文化を作る
patorash
0
610
Stimulusのススメ
patorash
0
70
ActiveRecordの速度改善Tips2020冬
patorash
0
67
わかった気になる!OpenID Connect
patorash
2
2k
Start-SQLの紹介
patorash
0
710
RailsアプリにGraphQLを導入してみた話
patorash
1
640
Other Decks in Technology
See All in Technology
こんなデータマートは嫌だ。どんな? / waiwai-data-meetup-202504
shuntak
6
1.7k
システムとの会話から生まれる先手のDevOps
kakehashi
PRO
0
220
GitHub MCP Serverを使って Pull Requestを作る、レビューする
hiyokose
2
710
はてなの開発20年史と DevOpsの歩み / DevOpsDays Tokyo 2025 Keynote
daiksy
5
1.4k
Стильный код: натуральный поиск редких атрибутов по картинке. Юлия Антохина, Data Scientist, Lamoda Tech
lamodatech
0
330
【2025年度新卒技術研修】100分で学ぶ サイバーエージェントのデータベース 活用事例とMySQLパフォーマンス調査
cyberagentdevelopers
PRO
4
6.5k
Devinで模索する AIファースト開発〜ゼロベースから始めるDevOpsの進化〜
potix2
PRO
6
2.8k
ウォンテッドリーにおける Platform Engineering
bgpat
0
190
OSSコントリビュートをphp-srcメンテナの立場から語る / OSS Contribute
sakitakamachi
0
1.3k
Android는 어떻게 화면을 그릴까?
davidkwon7
0
100
Amazon CloudWatch Application Signals ではじめるバーンレートアラーム / Burn rate alarm with Amazon CloudWatch Application Signals
ymotongpoo
5
310
ゆるくVPC Latticeについてまとめてみたら、意外と奥深い件
masakiokuda
2
230
Featured
See All Featured
Building an army of robots
kneath
304
45k
Faster Mobile Websites
deanohume
306
31k
A designer walks into a library…
pauljervisheath
205
24k
Docker and Python
trallard
44
3.3k
The Invisible Side of Design
smashingmag
299
50k
Git: the NoSQL Database
bkeepers
PRO
430
65k
How to Think Like a Performance Engineer
csswizardry
23
1.5k
GraphQLとの向き合い方2022年版
quramy
46
14k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Optimizing for Happiness
mojombo
377
70k
Transcript
インデックスの種類 2020-01-25 第28回 中国地方DB勉強会 @patorash 1
自己紹介 名前:尾古 豊明(おこ とよあき) twitter: @patorash 所属:株式会社リゾーム システム開発部 役職:専門職 仕事内容:
ショッピングセンターに関連するサービス開発 Ruby on Railsで自社サービスの開発・運用(7年目) データベースについて詳しくなりたい。OSS-DB Silver取得済み。 現在、データベーススペシャリスト試験に向けて勉強中 2
OSS-DB Silverを受けた頃のワイ 3 よくわからんけど普通に使うのB-Tree Indexだけじゃない? B-Tree Index理解しとけばいいや。 よし、Index完全に理解した。
データベーススペシャリストの勉強をしてるワイ 4 まったくわからない。 俺は雰囲気でIndexを使っている。
Indexについて整理 5
Indexの種類 • B-tree Index • Bitmap Index • Hash Index
• その他(GiSTとか)※今回は取り上げない 6
B-tree Index • PostgreSQLのデフォルトのIndex • MySQLはストレージエンジンによって デフォルトは異なるが、 Inno DBだと デフォルトのIndex
• 木構造で作られる • BはBalanced • カーディナリティ(選択性)が 高い列に有効 • カーディナリティが低い列だと フルスキャンが発生する • 範囲検索でも使える 31 17 20 35 42 10 15 32 33 37 39 50 52 18 19 25 30 ※EXAM PRESS うかる!データベーススペシャリスト より抜粋 7
Bitmap Index • Bitmap形式のIndex ◦ 0と1で表現 • カーディナリティの低い場合に有効 ◦ 性別、権限、カテゴリー等の種類の少ない
ケースのこと • PostgreSQLの場合、明示的にこの Indexを 指定することはできないが、実行時に Bitmapを作成し、それを使ってスキャンする ことがある ◦ Bitmapの作成にコストがかかるが、 それでもフルスキャンに比べるとマシ というケースで発動 8 性別 権限 浜田 男 管理者 松本 男 編集者 今田 男 ゲスト 東野 男 編集者 板尾 男 管理者 蔵野 男 ゲスト 篠原 女 編集者 YOU 女 ゲスト
Bitmap Index • Bitmap形式のIndex ◦ 0と1で表現 • カーディナリティの低い場合に有効 ◦ 性別、権限、カテゴリー等の種類の少ない
ケースのこと • PostgreSQLの場合、明示的にこの Indexを 指定することはできないが、実行時に Bitmapを作成し、それを使ってスキャンする ことがある ◦ Bitmapの作成にコストがかかるが、 それでもフルスキャンに比べるとマシ というケースで発動 9 男性 女性 管理者 編集者 ゲスト 浜田 1 0 1 0 0 松本 1 0 0 1 0 今田 1 0 0 0 1 東野 1 0 0 1 0 板尾 1 0 1 0 0 蔵野 1 0 0 0 1 篠原 0 1 0 1 0 YOU 0 1 0 0 1
Bitmap Index • Bitmap形式のIndex ◦ 0と1で表現 • カーディナリティの低い場合に有効 ◦ 性別、権限、カテゴリー等の種類の少ない
ケースのこと • PostgreSQLの場合、明示的にこの Indexを 指定することはできないが、実行時に Bitmapを作成し、それを使ってスキャンする ことがある ◦ Bitmapの作成にコストがかかるが、 それでもフルスキャンに比べるとマシ というケースで発動 • 男で管理者、という条件にしたら、浜田と板 尾がすぐに浮かび上がる 10 男性 女性 管理者 編集者 ゲスト 浜田 1 0 1 0 0 松本 1 0 0 1 0 今田 1 0 0 0 1 東野 1 0 0 1 0 板尾 1 0 1 0 0 蔵野 1 0 0 0 1 篠原 0 1 0 1 0 YOU 0 1 0 0 1
Hash Index • 値のHash値を作るIndex • 完全一致の際に効果的 • 範囲検索はできない • Indexの物理量の増え方が一定になる
• PostgreSQLでは使えるが非推奨 ◦ WALに書き込めない ◦ ストリーミングレプリケーションで 使えない 11 メールアドレス Hash値 浜田
[email protected]
723E7 松本
[email protected]
83AB4 今田
[email protected]
15D1C 東野
[email protected]
9AB2F 板尾
[email protected]
699FE 蔵野
[email protected]
1DAF8 篠原
[email protected]
3E783 YOU
[email protected]
AB415
OSS-DB Silverを受けた頃のワイ 12 よくわからんけど普通に使うのB-Tree Indexだけじゃない? B-Tree Index理解しとけばいいや。 よし、Index完全に理解した。
PostgreSQL10でHash Indexが強化! 13
Hash Index • 値のHash値を作るIndex • 完全一致の際に効果的 • 範囲検索はできない • Indexの物理量の増え方が一定になる
• PostgreSQL 9.xでは使えるが非推奨 ◦ WALに書き込めない ◦ ストリーミングレプリケーションで 使えない • PostgreSQL 10以上で使える! ◦ WALに書き込める! ◦ ストリーミングレプリケーションで 使える! 14 メールアドレス Hash値 浜田
[email protected]
723E7 松本
[email protected]
83AB4 今田
[email protected]
15D1C 東野
[email protected]
9AB2F 板尾
[email protected]
699FE 蔵野
[email protected]
1DAF8 篠原
[email protected]
3E783 YOU
[email protected]
AB415
Hash Indexを試してみた • データ1万件程度 • ユニーク制約のついた列 • 完全一致で利用 • B-Tree
Indexと速度面・データ量で比較 15
結果 • 検索速度はB-Tree Indexと、ほぼ変わらず • 実行計画では、Hash Indexでは若干コストが低い • Indexのデータ量も1万件程度だと、ほぼ変わらず ◦
行数が増えるとHash Indexのほうがデータ量的に少なくて済んだという記事を見た (@nuko_yokohamaさんの記事) ◦ 1000万行入れた時のデータについて。 ◦ https://qiita.com/nuko_yokohama/items/05ece8313af0f81a870d 16
まとめ B-Tree Indexを使っておけば、基本は大丈夫。 Bitmap Index はクエリ実行時に自動で作られる。(B-Tree Indexは必要) Hash Indexは(ほぼ)ユニークで完全一致のケースならば有効。 使ってみてはいかがでしょうか?(ただし、PostgreSQL
10以上) 適用できそうな例: • メールアドレス • 電話番号 • ユーザーコード • 認証系 • アクセスキー • アクセスシークレット 他にありそうな例があったら教えてください! 17