Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SWIM: Scalable Weakly Consistent Infection Styl...
Search
Paul Hinze
July 22, 2015
Technology
2
360
SWIM: Scalable Weakly Consistent Infection Style Process Group Membership Protocol
Papers We Love, Chicago
July 22, 2015
Paul Hinze
July 22, 2015
Tweet
Share
More Decks by Paul Hinze
See All by Paul Hinze
Getting Good at System Failure Analysis
phinze
0
450
Applying Graph Theory to Infrastructure As Code
phinze
6
2.1k
Infrastructure as Code with Terraform and Friends
phinze
2
300
Smoke & Mirrors: The Primitives of High Availability
phinze
1
660
Git: Everybody's Favorite MMO
phinze
0
180
Shut Up and Pipe! Unix-style Object Collaboration in Rack and Vagrant
phinze
0
160
Freighthop: Vagrant on Rails
phinze
0
310
Puppet Modules Are Our Friends
phinze
0
110
Who Needs Clouds?: HA in Your Datacenter
phinze
1
520
Other Decks in Technology
See All in Technology
お試しで oxlint を導入してみる #vuefes_aftertalk
bengo4com
2
1.5k
Redux → Recoil → Zustand → useSyncExternalStore: 状態管理の10年とReact本来の姿
zozotech
PRO
14
7.5k
「もっと正確に、もっと効率的に」ANDPADの写真書き込み機能における、 現場の声を形にしたエンハンス
andpad
0
100
これからアウトプットする人たちへ - アウトプットを支える技術 / that support output
soudai
PRO
18
5.4k
Spring Boot利用を前提としたJavaライブラリ開発方法の提案
kokihoshihara
PRO
2
200
エンジニアにとってコードと並んで重要な「データ」のお話 - データが動くとコードが見える:関数型=データフロー入門
ismk
0
510
CDKの魔法を少し解いてみる ― synth・build・diffで覗くIaCの裏側 ―
takahumi27
1
150
今、MySQLのバックアップを作り直すとしたら何がどう良いのかを考える旅
yoku0825
0
300
us-east-1 の障害が 起きると なぜ ソワソワするのか
miu_crescent
PRO
3
870
嗚呼、当時の本番環境の状態で AI Agentを再評価したいなぁ...
po3rin
0
410
Flutter DevToolsで発見! 本番アプリのパフォーマンス問題と改善の実践
goto_tsl
1
570
「データ無い! 腹立つ! 推論する!」から 「データ無い! 腹立つ! データを作る」へ チームでデータを作り、育てられるようにするまで / How can we create, use, and maintain data ourselves?
moznion
7
4.2k
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Designing for Performance
lara
610
69k
GraphQLとの向き合い方2022年版
quramy
49
14k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Faster Mobile Websites
deanohume
310
31k
Mobile First: as difficult as doing things right
swwweet
225
10k
Code Review Best Practice
trishagee
72
19k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Transcript
SWIM Scalable Weakly Consistent Infection Style Process Group Membership Protocol
Paul Hinze phinze
Paul Hinze phinze death stare
Armon Dadgar armon creator of Serf and Consul
ma
None
None
Process Group Membership Protocol Who is alive
None
Process Group Membership Protocol
SWIM Scalable Weakly Consistent Infection Style Process Group Membership Protocol
Scalable The SWIM effort is motivated by the unscalability of
traditional heartbeating protocols.
Heartbeating A B C A A B B Failure Detection
+ Membership
Heartbeating
Evaluating Protocols Completeness Speed Accuracy Overhead
Evaluating Protocols Completeness Speed Accuracy Overhead heartbeating Yes Limit *
Interval High Nodes2 !
Key Insight Failure Detection State Updates. Solve separately from
Failure Detection ping! ack! A B C D {B,C,D}
Failure Detection ping! ack! A B C D {B,C,D}
Indirect Ping ping(C)! ack! B C D ping(C)! ping ack
fail {B,C,D}
Indirect Ping ping(C)! B C D ping(C)! fail ...C is
dead! fail
Key Insight Failure Detection State Updates. Solve separately from
Key Insight State Updates Failure Detection Piggyback onto messages.
State Updates ping! (B is dead) ack! (D just joined)
A B C D {B,C} {D}
Infection Style A B C D {B,C} {A,B,D} {A,B} weakly
consistent
Evaluating Protocols Completeness Speed Accuracy Overhead SWIM Yes, eventually 1
* Interval High-ish O(N)
Improvements Time Bounded Completeness Increased Accuracy
Completeness A B {B, C, D, ..., N} N
Completeness A B {B, C, D, ..., N} N 1.
Shuffle List 2. Iterate
Completeness Fixed Time
Evaluating Protocols Completeness Speed Accuracy Overhead SWIM Yes, fixed time
1 * Interval High-ish O(N)
Accuracy B C D ...C is MAYBE dead! A
Accuracy B C D I heard C might be dead.
A
Accuracy B C D I'm not dead! A
Accuracy
Evaluating Protocols Completeness Speed Accuracy Overhead SWIM Yes, fixed time
1 * Interval High O(N)
Evaluating Protocols Completeness Speed Accuracy Overhead SWIM Yes, fixed time
1 * Interval High O(N)
None
Limitations Update Latency Problem Solution Separate Gossip Timer
Limitations Cannot Handle Network Partitions Problem Solution Track and Retry
Recently Dead Nodes
Limitations No Concept of Graceful Leave (vs Failure) Problem Solution
Broadcast and Tracking of "Intents"
Limitations New Nodes Take Too Long Materialize Initial State Problem
Solution Anti-entropy TCP State Syncs
Limitations No built-in facility for user data Problem Solution Implement
user payloads (ordering via lamport clocks)
Limitations No peer metadata, only IP Addresses Problem Solution Inject
versioned peer metadata into state messages
Limitations No encryption Problem Solution Implement AES-GCM with key rotation
56 nodes 2K nodes Performance
Implementations Memberlist https://github.com/hashicorp/memberlist Serf lib https://github.com/hashicorp/serf Serf http://www.serfdom.io Consul http://www.consul.io
Implementations events, queries, and scripts serf CLI serf lib memberlist
Implementations service discovery, K/V, health checks consul serf lib memberlist
Implementations service discovery, K/V, health checks
Thanks Cloud icons by Julien Deveaux from the Noun Project