Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Claire Monteleoni

S³ Seminar
January 26, 2024

Claire Monteleoni

(Inria Paris and University of Colorado Boulder)

Title — Self-supervised learning for geospatial data

Abstract — Digitized data has become abundant, especially in the geosciences, but preprocessing it to create the “labeled data” needed for supervised machine learning is often costly, time-consuming, or even impossible. Fortuitously, in very large-scale data domains, “self-supervised” machine learning methods are now actually outperforming supervised learning methods. In this talk, I will first define self-supervised deep learning, including the notion of a “pretext task.” Then I will survey our lab’s work developing self-supervised learning approaches for several tasks in the geosciences, such as downscaling spatiotemporal data and detecting anomalies in remotely-sensed imagery.

Bio
Claire Monteleoni is a Choose France Chair in AI and a Research Director at INRIA Paris, a Professor in the Department of Computer Science at the University of Colorado Boulder, and the founding Editor in Chief of Environmental Data Science, a Cambridge University Press journal, launched in December 2020. She joined INRIA in 2023 and has previously held positions at University of Paris-Saclay, CNRS, George Washington University, and Columbia University. She completed her PhD and Masters in Computer Science at MIT and was a postdoc at UC San Diego. She holds a Bachelor’s in Earth and Planetary Sciences from Harvard. Her research on machine learning for the study of climate change helped launch the interdisciplinary field of Climate Informatics. She co-founded the International Conference on Climate Informatics, which turned 12 years old in 2023, and has attracted climate scientists and data scientists from over 20 countries and 30 U.S. states. She gave an invited tutorial: Climate Change: Challenges for Machine Learning, at NeurIPS 2014. She currently serves on the NSF Advisory Committee for Environmental Research and Education.

S³ Seminar

January 26, 2024
Tweet

More Decks by S³ Seminar

Other Decks in Research

Transcript

  1. CONFIDENTIAL MERIT REVIEW INFORMATION 2 “The AI opportunity for the

    Earth is significant. Today’s AI explosion will see us add AI to more and more things every year.... As we think about the gains, efficiencies and new soluCons this creates for naCons, business and for everyday life, we must also think about how to maximize the gains for society and our environment at large.” – The World Economic Forum: Harnessing ArCficial Intelligence for the Earth. 2018
  2. Climate Informa9cs: using Machine Learning to address Climate Change 2008

    Started research on Climate Informatics, with Gavin Schmidt, NASA 2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award] 2011 Launched International Workshop on Climate Informatics, New York Academy of Sciences 2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years 2013 “Climate Informatics” book chapter [M et al., SAM] 2014 “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurIPS Tutorial] 2015 Launched Climate Informatics Hackathon, Paris and Boulder 2018 World Economic Forum recognizes Climate Informatics as key priority 2021 Computing Research for the Climate Crisis [Bliss, Bradley @ M, CCC white paper] 2022 First batch of articles published in Environmental Data Science, Cambridge University Press 2023 12th Conference on Climate Informatics and 9th Hackathon, Cambridge, UK 2024 13th Conference on Climate Informatics and 10th Hackathon, April 22nd-24th Turing Institute, London
  3. AI Research for Climate Change and Environmental Sustainability • Machine

    Learning for Climate Science Understanding and Predicting Climate Change and Impacts • Machine Learning for Climate Mitigation Accelerating the Green Transition • Machine Learning for Climate Adaptation Extreme Weather and Cascading Hazards Long-term Medium-term Short-term
  4. Today: Self-supervised learning for geospa9al data What is self-supervised learning?

    Normalizing flows for downscaling geospa;al data A pretext task for temporal downscaling of geospa;al data 5
  5. Semi/Unsupervised learning: Equity motivation • Train models in data-rich regions

    and apply them in data-poor regions ◦ Can evaluate them against supervised learning models in data-rich regions ◦ Can fine-tune them using the limited data in the data-poor regions • Contribution to climate data equity ◦ Local scales (e.g. legacy of environmental injustice in USA) ◦ Global scales: ▪ Global North historically emitted more carbon; Meanwhile there’s typically more data there ▪ Global South is suffering the most severe effects of the resulting warming 6
  6. 7 “Many majority- Black parts of the Southeast [USA] are

    relatively far from radar sites, meaning that it’s harder to gather information about storms impacting these areas.” Credit: Jack Sillin, in [McGovern et al., Environmental Data Science, 2022]
  7. Outline What is self-supervised learning? Normalizing flows for downscaling geospa;al

    data A pretext task for temporal downscaling of geospa;al data 8
  8. Unsupervised Deep Learning • Supervised DL. PredicIon loss is a

    funcIon of the label, y, and the network’s output on input x. Network output Loss funcJon • Unsupervised DL. PredicIon loss is only a funcIon of x, and the network’s output on input x. There is no label, y. Network output Loss funcJon fW (x) = ˆ y <latexit sha1_base64="zh18535gwRJ3lGs9fjqOKP+Qpn8=">AAAB+HicbVBNS8NAEJ34WetHox69LBahXkoigl6EohePFewHtCFstpt26WYTdjdiDP0lXjwo4tWf4s1/47bNQVsfDDzem2FmXpBwprTjfFsrq2vrG5ulrfL2zu5exd4/aKs4lYS2SMxj2Q2wopwJ2tJMc9pNJMVRwGknGN9M/c4DlYrF4l5nCfUiPBQsZARrI/l2JfQ7tcdTdIX6I6xR5ttVp+7MgJaJW5AqFGj69ld/EJM0okITjpXquU6ivRxLzQink3I/VTTBZIyHtGeowBFVXj47fIJOjDJAYSxNCY1m6u+JHEdKZVFgOiOsR2rRm4r/eb1Uh5dezkSSairIfFGYcqRjNE0BDZikRPPMEEwkM7ciMsISE22yKpsQ3MWXl0n7rO46dffuvNq4LuIowREcQw1cuIAG3EITWkAghWd4hTfryXqx3q2PeeuKVcwcwh9Ynz+9aZHV</latexit> <latexit sha1_base64="zh18535gwRJ3lGs9fjqOKP+Qpn8=">AAAB+HicbVBNS8NAEJ34WetHox69LBahXkoigl6EohePFewHtCFstpt26WYTdjdiDP0lXjwo4tWf4s1/47bNQVsfDDzem2FmXpBwprTjfFsrq2vrG5ulrfL2zu5exd4/aKs4lYS2SMxj2Q2wopwJ2tJMc9pNJMVRwGknGN9M/c4DlYrF4l5nCfUiPBQsZARrI/l2JfQ7tcdTdIX6I6xR5ttVp+7MgJaJW5AqFGj69ld/EJM0okITjpXquU6ivRxLzQink3I/VTTBZIyHtGeowBFVXj47fIJOjDJAYSxNCY1m6u+JHEdKZVFgOiOsR2rRm4r/eb1Uh5dezkSSairIfFGYcqRjNE0BDZikRPPMEEwkM7ciMsISE22yKpsQ3MWXl0n7rO46dffuvNq4LuIowREcQw1cuIAG3EITWkAghWd4hTfryXqx3q2PeeuKVcwcwh9Ynz+9aZHV</latexit> <latexit sha1_base64="zh18535gwRJ3lGs9fjqOKP+Qpn8=">AAAB+HicbVBNS8NAEJ34WetHox69LBahXkoigl6EohePFewHtCFstpt26WYTdjdiDP0lXjwo4tWf4s1/47bNQVsfDDzem2FmXpBwprTjfFsrq2vrG5ulrfL2zu5exd4/aKs4lYS2SMxj2Q2wopwJ2tJMc9pNJMVRwGknGN9M/c4DlYrF4l5nCfUiPBQsZARrI/l2JfQ7tcdTdIX6I6xR5ttVp+7MgJaJW5AqFGj69ld/EJM0okITjpXquU6ivRxLzQink3I/VTTBZIyHtGeowBFVXj47fIJOjDJAYSxNCY1m6u+JHEdKZVFgOiOsR2rRm4r/eb1Uh5dezkSSairIfFGYcqRjNE0BDZikRPPMEEwkM7ciMsISE22yKpsQ3MWXl0n7rO46dffuvNq4LuIowREcQw1cuIAG3EITWkAghWd4hTfryXqx3q2PeeuKVcwcwh9Ynz+9aZHV</latexit> <latexit sha1_base64="zh18535gwRJ3lGs9fjqOKP+Qpn8=">AAAB+HicbVBNS8NAEJ34WetHox69LBahXkoigl6EohePFewHtCFstpt26WYTdjdiDP0lXjwo4tWf4s1/47bNQVsfDDzem2FmXpBwprTjfFsrq2vrG5ulrfL2zu5exd4/aKs4lYS2SMxj2Q2wopwJ2tJMc9pNJMVRwGknGN9M/c4DlYrF4l5nCfUiPBQsZARrI/l2JfQ7tcdTdIX6I6xR5ttVp+7MgJaJW5AqFGj69ld/EJM0okITjpXquU6ivRxLzQink3I/VTTBZIyHtGeowBFVXj47fIJOjDJAYSxNCY1m6u+JHEdKZVFgOiOsR2rRm4r/eb1Uh5dezkSSairIfFGYcqRjNE0BDZikRPPMEEwkM7ciMsISE22yKpsQ3MWXl0n7rO46dffuvNq4LuIowREcQw1cuIAG3EITWkAghWd4hTfryXqx3q2PeeuKVcwcwh9Ynz+9aZHV</latexit> fW (x) = ˆ x <latexit sha1_base64="QB0mhNMxOfRAbGS9V7nySiWYOGM=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfQiFL14rGA/oA1hs920SzebsDuR1tBf4sWDIl79Kd78N27bHLT1wcDjvRlm5gWJ4Boc59sqrK1vbG4Vt0s7u3v7ZfvgsKXjVFHWpLGIVScgmgkuWRM4CNZJFCNRIFg7GN3O/PYjU5rH8gEmCfMiMpA85JSAkXy7HPrt6vgMX+PekAAe+3bFqTlz4FXi5qSCcjR8+6vXj2kaMQlUEK27rpOAlxEFnAo2LfVSzRJCR2TAuoZKEjHtZfPDp/jUKH0cxsqUBDxXf09kJNJ6EgWmMyIw1MveTPzP66YQXnkZl0kKTNLFojAVGGI8SwH3uWIUxMQQQhU3t2I6JIpQMFmVTAju8surpHVec52ae39Rqd/kcRTRMTpBVeSiS1RHd6iBmoiiFD2jV/RmPVkv1rv1sWgtWPnMEfoD6/MHu+WR1A==</latexit> <latexit sha1_base64="QB0mhNMxOfRAbGS9V7nySiWYOGM=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfQiFL14rGA/oA1hs920SzebsDuR1tBf4sWDIl79Kd78N27bHLT1wcDjvRlm5gWJ4Boc59sqrK1vbG4Vt0s7u3v7ZfvgsKXjVFHWpLGIVScgmgkuWRM4CNZJFCNRIFg7GN3O/PYjU5rH8gEmCfMiMpA85JSAkXy7HPrt6vgMX+PekAAe+3bFqTlz4FXi5qSCcjR8+6vXj2kaMQlUEK27rpOAlxEFnAo2LfVSzRJCR2TAuoZKEjHtZfPDp/jUKH0cxsqUBDxXf09kJNJ6EgWmMyIw1MveTPzP66YQXnkZl0kKTNLFojAVGGI8SwH3uWIUxMQQQhU3t2I6JIpQMFmVTAju8surpHVec52ae39Rqd/kcRTRMTpBVeSiS1RHd6iBmoiiFD2jV/RmPVkv1rv1sWgtWPnMEfoD6/MHu+WR1A==</latexit> <latexit sha1_base64="QB0mhNMxOfRAbGS9V7nySiWYOGM=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfQiFL14rGA/oA1hs920SzebsDuR1tBf4sWDIl79Kd78N27bHLT1wcDjvRlm5gWJ4Boc59sqrK1vbG4Vt0s7u3v7ZfvgsKXjVFHWpLGIVScgmgkuWRM4CNZJFCNRIFg7GN3O/PYjU5rH8gEmCfMiMpA85JSAkXy7HPrt6vgMX+PekAAe+3bFqTlz4FXi5qSCcjR8+6vXj2kaMQlUEK27rpOAlxEFnAo2LfVSzRJCR2TAuoZKEjHtZfPDp/jUKH0cxsqUBDxXf09kJNJ6EgWmMyIw1MveTPzP66YQXnkZl0kKTNLFojAVGGI8SwH3uWIUxMQQQhU3t2I6JIpQMFmVTAju8surpHVec52ae39Rqd/kcRTRMTpBVeSiS1RHd6iBmoiiFD2jV/RmPVkv1rv1sWgtWPnMEfoD6/MHu+WR1A==</latexit> <latexit sha1_base64="QB0mhNMxOfRAbGS9V7nySiWYOGM=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISEfQiFL14rGA/oA1hs920SzebsDuR1tBf4sWDIl79Kd78N27bHLT1wcDjvRlm5gWJ4Boc59sqrK1vbG4Vt0s7u3v7ZfvgsKXjVFHWpLGIVScgmgkuWRM4CNZJFCNRIFg7GN3O/PYjU5rH8gEmCfMiMpA85JSAkXy7HPrt6vgMX+PekAAe+3bFqTlz4FXi5qSCcjR8+6vXj2kaMQlUEK27rpOAlxEFnAo2LfVSzRJCR2TAuoZKEjHtZfPDp/jUKH0cxsqUBDxXf09kJNJ6EgWmMyIw1MveTPzP66YQXnkZl0kKTNLFojAVGGI8SwH3uWIUxMQQQhU3t2I6JIpQMFmVTAju8surpHVec52ae39Rqd/kcRTRMTpBVeSiS1RHd6iBmoiiFD2jV/RmPVkv1rv1sWgtWPnMEfoD6/MHu+WR1A==</latexit> L(ˆ y, y) <latexit sha1_base64="AHZaA55iG3ZzuVC9OzZRAYzaEno=">AAAB/HicbVBNS8NAEN34WetXtEcvi0WoICURQY9FLx48VLAf0ISy2W7apZtN2J0IIdS/4sWDIl79Id78N27bHLT1wcDjvRlm5gWJ4Boc59taWV1b39gsbZW3d3b39u2Dw7aOU0VZi8YiVt2AaCa4ZC3gIFg3UYxEgWCdYHwz9TuPTGkeywfIEuZHZCh5yCkBI/XtSu5RIvDdpOaNCODsDGenfbvq1J0Z8DJxC1JFBZp9+8sbxDSNmAQqiNY910nAz4kCTgWblL1Us4TQMRmynqGSREz7+ez4CT4xygCHsTIlAc/U3xM5ibTOosB0RgRGetGbiv95vRTCKz/nMkmBSTpfFKYCQ4ynSeABV4yCyAwhVHFzK6YjoggFk1fZhOAuvrxM2ud116m79xfVxnURRwkdoWNUQy66RA10i5qohSjK0DN6RW/Wk/VivVsf89YVq5ipoD+wPn8A65yToQ==</latexit> <latexit sha1_base64="AHZaA55iG3ZzuVC9OzZRAYzaEno=">AAAB/HicbVBNS8NAEN34WetXtEcvi0WoICURQY9FLx48VLAf0ISy2W7apZtN2J0IIdS/4sWDIl79Id78N27bHLT1wcDjvRlm5gWJ4Boc59taWV1b39gsbZW3d3b39u2Dw7aOU0VZi8YiVt2AaCa4ZC3gIFg3UYxEgWCdYHwz9TuPTGkeywfIEuZHZCh5yCkBI/XtSu5RIvDdpOaNCODsDGenfbvq1J0Z8DJxC1JFBZp9+8sbxDSNmAQqiNY910nAz4kCTgWblL1Us4TQMRmynqGSREz7+ez4CT4xygCHsTIlAc/U3xM5ibTOosB0RgRGetGbiv95vRTCKz/nMkmBSTpfFKYCQ4ynSeABV4yCyAwhVHFzK6YjoggFk1fZhOAuvrxM2ud116m79xfVxnURRwkdoWNUQy66RA10i5qohSjK0DN6RW/Wk/VivVsf89YVq5ipoD+wPn8A65yToQ==</latexit> <latexit sha1_base64="AHZaA55iG3ZzuVC9OzZRAYzaEno=">AAAB/HicbVBNS8NAEN34WetXtEcvi0WoICURQY9FLx48VLAf0ISy2W7apZtN2J0IIdS/4sWDIl79Id78N27bHLT1wcDjvRlm5gWJ4Boc59taWV1b39gsbZW3d3b39u2Dw7aOU0VZi8YiVt2AaCa4ZC3gIFg3UYxEgWCdYHwz9TuPTGkeywfIEuZHZCh5yCkBI/XtSu5RIvDdpOaNCODsDGenfbvq1J0Z8DJxC1JFBZp9+8sbxDSNmAQqiNY910nAz4kCTgWblL1Us4TQMRmynqGSREz7+ez4CT4xygCHsTIlAc/U3xM5ibTOosB0RgRGetGbiv95vRTCKz/nMkmBSTpfFKYCQ4ynSeABV4yCyAwhVHFzK6YjoggFk1fZhOAuvrxM2ud116m79xfVxnURRwkdoWNUQy66RA10i5qohSjK0DN6RW/Wk/VivVsf89YVq5ipoD+wPn8A65yToQ==</latexit> <latexit sha1_base64="AHZaA55iG3ZzuVC9OzZRAYzaEno=">AAAB/HicbVBNS8NAEN34WetXtEcvi0WoICURQY9FLx48VLAf0ISy2W7apZtN2J0IIdS/4sWDIl79Id78N27bHLT1wcDjvRlm5gWJ4Boc59taWV1b39gsbZW3d3b39u2Dw7aOU0VZi8YiVt2AaCa4ZC3gIFg3UYxEgWCdYHwz9TuPTGkeywfIEuZHZCh5yCkBI/XtSu5RIvDdpOaNCODsDGenfbvq1J0Z8DJxC1JFBZp9+8sbxDSNmAQqiNY910nAz4kCTgWblL1Us4TQMRmynqGSREz7+ez4CT4xygCHsTIlAc/U3xM5ibTOosB0RgRGetGbiv95vRTCKz/nMkmBSTpfFKYCQ4ynSeABV4yCyAwhVHFzK6YjoggFk1fZhOAuvrxM2ud116m79xfVxnURRwkdoWNUQy66RA10i5qohSjK0DN6RW/Wk/VivVsf89YVq5ipoD+wPn8A65yToQ==</latexit> L(ˆ x, x) <latexit sha1_base64="/eXGLHuhyFIfoieNyg8tz/lBmBU=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0WoICURQY9FLx48VLAf0ISy2W7bpZtN2N1IQ6h/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtizpR2nG9rZXVtfWOzsFXc3tnd27cPDpsqSiShDRLxSLYDrChngjY005y2Y0lxGHDaCkY3U7/1SKVikXjQaUz9EA8E6zOCtZG6dinzCOboblLxhlij8Rkan3btslN1ZkDLxM1JGXLUu/aX14tIElKhCcdKdVwn1n6GpWaE00nRSxSNMRnhAe0YKnBIlZ/Njp+gE6P0UD+SpoRGM/X3RIZDpdIwMJ0h1kO16E3F/7xOovtXfsZEnGgqyHxRP+FIR2iaBOoxSYnmqSGYSGZuRWSIJSba5FU0IbiLLy+T5nnVdaru/UW5dp3HUYAjOIYKuHAJNbiFOjSAQArP8Apv1pP1Yr1bH/PWFSufKcEfWJ8/6I+Tnw==</latexit> <latexit sha1_base64="/eXGLHuhyFIfoieNyg8tz/lBmBU=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0WoICURQY9FLx48VLAf0ISy2W7bpZtN2N1IQ6h/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtizpR2nG9rZXVtfWOzsFXc3tnd27cPDpsqSiShDRLxSLYDrChngjY005y2Y0lxGHDaCkY3U7/1SKVikXjQaUz9EA8E6zOCtZG6dinzCOboblLxhlij8Rkan3btslN1ZkDLxM1JGXLUu/aX14tIElKhCcdKdVwn1n6GpWaE00nRSxSNMRnhAe0YKnBIlZ/Njp+gE6P0UD+SpoRGM/X3RIZDpdIwMJ0h1kO16E3F/7xOovtXfsZEnGgqyHxRP+FIR2iaBOoxSYnmqSGYSGZuRWSIJSba5FU0IbiLLy+T5nnVdaru/UW5dp3HUYAjOIYKuHAJNbiFOjSAQArP8Apv1pP1Yr1bH/PWFSufKcEfWJ8/6I+Tnw==</latexit> <latexit sha1_base64="/eXGLHuhyFIfoieNyg8tz/lBmBU=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0WoICURQY9FLx48VLAf0ISy2W7bpZtN2N1IQ6h/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtizpR2nG9rZXVtfWOzsFXc3tnd27cPDpsqSiShDRLxSLYDrChngjY005y2Y0lxGHDaCkY3U7/1SKVikXjQaUz9EA8E6zOCtZG6dinzCOboblLxhlij8Rkan3btslN1ZkDLxM1JGXLUu/aX14tIElKhCcdKdVwn1n6GpWaE00nRSxSNMRnhAe0YKnBIlZ/Njp+gE6P0UD+SpoRGM/X3RIZDpdIwMJ0h1kO16E3F/7xOovtXfsZEnGgqyHxRP+FIR2iaBOoxSYnmqSGYSGZuRWSIJSba5FU0IbiLLy+T5nnVdaru/UW5dp3HUYAjOIYKuHAJNbiFOjSAQArP8Apv1pP1Yr1bH/PWFSufKcEfWJ8/6I+Tnw==</latexit> <latexit sha1_base64="/eXGLHuhyFIfoieNyg8tz/lBmBU=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0WoICURQY9FLx48VLAf0ISy2W7bpZtN2N1IQ6h/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtizpR2nG9rZXVtfWOzsFXc3tnd27cPDpsqSiShDRLxSLYDrChngjY005y2Y0lxGHDaCkY3U7/1SKVikXjQaUz9EA8E6zOCtZG6dinzCOboblLxhlij8Rkan3btslN1ZkDLxM1JGXLUu/aX14tIElKhCcdKdVwn1n6GpWaE00nRSxSNMRnhAe0YKnBIlZ/Njp+gE6P0UD+SpoRGM/X3RIZDpdIwMJ0h1kO16E3F/7xOovtXfsZEnGgqyHxRP+FIR2iaBOoxSYnmqSGYSGZuRWSIJSba5FU0IbiLLy+T5nnVdaru/UW5dp3HUYAjOIYKuHAJNbiFOjSAQArP8Apv1pP1Yr1bH/PWFSufKcEfWJ8/6I+Tnw==</latexit>
  9. Self-Supervised Approach to Unsupervised learning Self-supervised learning A state-of-the-art approach

    to (deep) unsupervised learning Design a pretext task: q Design a supervised learning task using only the available data. q Train a model on this task such that, q the learned features (or the learned posterior over a feature space) will be useful for another (down-stream) task. 10
  10. Pretext Task: Example Classic example of a pretext task: Autoencoder

    • Train a neural network in an unsupervised way • Use the unlabeled data both as input, and to evaluate the output • After training, the bottleneck layer will be a compact representation of the input distribution
  11. Encoder Decoder Input Output Latent representation Autoencoder: The parameters of

    the encoder and decoder networks are trained to make the output approximate the input. After training on many input examples, the parameters of the bottleneck layer form a compact representation of the input distribution.
  12. Normalizing Flows Can be viewed as extension of VAE beyond

    Gaussian assumption on latent space Learn a series of invertible transformations, {fi}, from a simple prior on latent space, Z, to allow for more informative distributions on the latent space: zk = fk fk 1 · · · f1(z0) <latexit sha1_base64="orQaNJWrcawR+b1pghkwRGxPsxs=">AAACHXicbVBNS8MwGE7n15xfVY9egkOYB0crE3cRBl48TnAfsJaSpukWlqYlSYWt7I948a948aCIBy/ivzHbiujmAwlPnud9efM+fsKoVJb1ZRRWVtfWN4qbpa3tnd09c/+gLeNUYNLCMYtF10eSMMpJS1HFSDcRBEU+Ix1/eD31O/dESBrzOzVKiBuhPqchxUhpyTNrY28Ir2CobwdTgTXLhmf2JH85OIiV/LFsWBl71qlnlq2qNQNcJnZOyiBH0zM/nCDGaUS4wgxJ2bOtRLkZEopiRiYlJ5UkQXiI+qSnKUcRkW42224CT7QSwDAW+nAFZ+rvjgxFUo4iX1dGSA3kojcV//N6qQrrbkZ5kirC8XxQmDKoYjiNCgZUEKzYSBOEBdV/hXiABMJKB1rSIdiLKy+T9nnVrlUvbmvlRj2PowiOwDGoABtcgga4AU3QAhg8gCfwAl6NR+PZeDPe56UFI+85BH9gfH4DtcqfyA==</latexit> [Rezende & Mohamed, ICML 2015]
  13. Outline What is self-supervised learning? Normalizing flows for downscaling geospatial

    data A pretext task for temporal downscaling of geospatial data 15
  14. Normalizing Flows: Applica3on to Spa3al Downscaling ERA: reanalysis data, 1°

    resolution; WRF: numerical weather model predicCon, ! " ° resoluCon [Groenke, Madaus, & Monteleoni, Climate InformaJcs 2020]
  15. Downscaling as Domain Alignment • Domain alignment task: given random

    variables X, Y, learn a mapping f: X à Y such that, for any xi ∈ X and yi ∈ Y, • Downscaling as domain alignment • Given i.i.d. samples at low resolution (X) and high-resolution (Y) • Learn the joint PDF over X and Y by assuming conditional independence over a shared latent space Z, • Model using AlignFlow [Grover et al. 2020] • Starting with a simple prior on PZ , learn normalizing flows • No pairing between x and y examples needed! f(xi) ⇠ PY <latexit sha1_base64="YTmMpIPd7ePy2DrIIGI3aNFpYSU=">AAAB+HicbVBNS8NAEJ34WetHox69LBahXkoiFT0WvXisYD+kDWGz3bRLN5uwuxFr6C/x4kERr/4Ub/4bt20O2vpg4PHeDDPzgoQzpR3n21pZXVvf2CxsFbd3dvdK9v5BS8WpJLRJYh7LToAV5UzQpmaa004iKY4CTtvB6Hrqtx+oVCwWd3qcUC/CA8FCRrA2km+Xwsqjz05RT7EINfx73y47VWcGtEzcnJQhR8O3v3r9mKQRFZpwrFTXdRLtZVhqRjidFHupogkmIzygXUMFjqjystnhE3RilD4KY2lKaDRTf09kOFJqHAWmM8J6qBa9qfif1011eOllTCSppoLMF4UpRzpG0xRQn0lKNB8bgolk5lZEhlhiok1WRROCu/jyMmmdVd1a9fy2Vq5f5XEU4AiOoQIuXEAdbqABTSCQwjO8wpv1ZL1Y79bHvHXFymcO4Q+szx88LJIt</latexit> f 1(yi) ⇠ PX <latexit sha1_base64="jL/a4uL4KiZwyrEqvmyIKMucEQo=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxCXVgSqeiy6MZlBfuANobJdNIOnZmEmYkQQ/FX3LhQxK3/4c6/cdpmoa0HLhzOuZd77wliRpV2nG+rsLS8srpWXC9tbG5t79i7ey0VJRKTJo5YJDsBUoRRQZqaakY6sSSIB4y0g9H1xG8/EKloJO50GhOPo4GgIcVIG8m3D8L77NQdV1KfnsCeohw2/I5vl52qMwVcJG5OyiBHw7e/ev0IJ5wIjRlSqus6sfYyJDXFjIxLvUSRGOERGpCuoQJxorxsev0YHhulD8NImhIaTtXfExniSqU8MJ0c6aGa9ybif1430eGll1ERJ5oIPFsUJgzqCE6igH0qCdYsNQRhSc2tEA+RRFibwEomBHf+5UXSOqu6ter5ba1cv8rjKIJDcAQqwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2PWWvBymf2wR9Ynz+oLpQT</latexit> PXY (x, y) = Z z2Z PXY Z(x, y, z)dz <latexit sha1_base64="aMURrznLUHvOmCQ6HkqQjwHgoV8=">AAACFHicbVDLTgIxFO3gC/GFunTTSEwgEjJjMLoxIbpxiYk8BCaTTinQ0OlM2o4RJvMRbvwVNy40xq0Ld/6NZWCh4Elu7sk596a9xw0Ylco0v43U0vLK6lp6PbOxubW9k93dq0s/FJjUsM980XSRJIxyUlNUMdIMBEGey0jDHV5N/MY9EZL6/FaNAmJ7qM9pj2KktORkj6tO1LyL8w/FUeGiQ7lyojHUHbZimFitxCuOC92xk82ZJTMBXCTWjOTADFUn+9Xp+jj0CFeYISnblhkoO0JCUcxInOmEkgQID1GftDXlyCPSjpKjYniklS7s+UIXVzBRf29EyJNy5Ll60kNqIOe9ifif1w5V79yOKA9CRTiePtQLGVQ+nCQEu1QQrNhIE4QF1X+FeIAEwkrnmNEhWPMnL5L6Sckql05vyrnK5SyONDgAhyAPLHAGKuAaVEENYPAInsEreDOejBfj3fiYjqaM2c4++APj8wfQHp1t</latexit> = Z z2Z P(x|z)P(y|z)PZ(z)dz <latexit sha1_base64="cwwoT/90eG1ES5d6UidVdDXcCjE=">AAACEnicbVC7SgNBFJ31GeNr1dJmMAhJE3ZFURAh0cYygnmQB8vsZJIMmZ1dZ2bFZM032Fj4DfY2FoqInZWdf+Nkk0ITLwzncM693LnHDRiVyrK+jZnZufmFxcRScnlldW3d3NgsST8UmBSxz3xRcZEkjHJSVFQxUgkEQZ7LSNntng398jURkvr8UvUC0vBQm9MWxUhpyTEzJ7BOuXKi/hBhdQBhIX1z289o6MXgVNMamn3HTFlZKy44TewxSeXyVw/5x4/jgmN+1Zs+Dj3CFWZIypptBaoRIaEoZmSQrIeSBAh3UZvUNOXII7IRxScN4K5WmrDlC/24grH6eyJCnpQ9z9WdHlIdOekNxf+8WqhaR42I8iBUhOPRolbIoPLhMB/YpIJgxXqaICyo/ivEHSQQVjrFpA7Bnjx5mpT2svZ+9uBCp3EKRpUA22AHpIENDkEOnIMCKAIM7sATeAGvxr3xbLwZ76PWGWM8swX+lPH5A/nDntE=</latexit> P(x|z), P(y|z) <latexit sha1_base64="NSkf+iwOHKkWi46ym3agKuVuLEs=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBahopQZUXRZdONyBPuAdiyZNNOGZh4kGXUc+xcu3LhQxK3/4q5/Y/pYaOuByz2ccy+5OW7EmVSmOTQyC4tLyyvZ1dza+sbmVn57pybDWBBaJSEPRcPFknIW0KpiitNGJCj2XU7rbv9y5NfvqJAsDG5UElHHx92AeYxgpaVbu/Tw9HhwhOxSons7XzTL5hhonlhTUqwUWofPw0pit/PfrU5IYp8GinAsZdMyI+WkWChGOB3kWrGkESZ93KVNTQPsU+mk46sHaF8rHeSFQleg0Fj9vZFiX8rEd/Wkj1VPznoj8T+vGSvv3ElZEMWKBmTykBdzpEI0igB1mKBE8UQTTATTtyLSwwITpYPK6RCs2S/Pk9px2Topn17rNC5ggizsQQFKYMEZVOAKbKgCAQEv8Abvxr3xanwYn5PRjDHd2YU/ML5+APzxlIQ=</latexit>
  16. ClimAlign architecture • Architecture follows AlignFlow [Grover et al., 2020]

    • Normalizing flow: Glow [Kingma & Dhariwal, 2018] Network parameters to learn: f : X $ Z <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> <latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit> <latexit sha1_base64="IRqBSy3h/umvE7t6hRZ3eIAy5mU=">AAACCHicbZC7SgNBFIbPeo0xarS1GRRBLMKujWIl2FhGMBfMhjA7OZsMmZ1dZs4qYck72PgqNhaK+AR2vo2TmMLbDwMf/z+380eZkpZ8/8NbWFxaXlktrZXXKxubW9XtStOmuRHYEKlKTTviFpXU2CBJCtuZQZ5EClvR6GKat27RWJnqaxpn2E34QMtYCk7O6lWP4l4R5rqPZnpDEWZDOZmwM9ZmocKYjBwMiRuT3rGbXnXfr/kzsb8QzGEf5qr3qu9hPxV5gpqE4tZ2Aj+jbsENSaFwUg5zixkXIz7AjkPNE7TdYjbThB04p8/i1Lilic3c7ycKnlg7TiK3M+E0tL+zqflf1skpPu0WUmc5oRZfD8W5YpSyaUGsLw0KUmMHXBjp/srEkBsuyNVYdiUEv0f+C83jWuDXgisfSrALe3AIAZzAOVxCHRog4B4e4RlevAfvyXv9qmvBm/e2Az/kvX0CqcqdAQ==</latexit> <latexit sha1_base64="IRqBSy3h/umvE7t6hRZ3eIAy5mU=">AAACCHicbZC7SgNBFIbPeo0xarS1GRRBLMKujWIl2FhGMBfMhjA7OZsMmZ1dZs4qYck72PgqNhaK+AR2vo2TmMLbDwMf/z+380eZkpZ8/8NbWFxaXlktrZXXKxubW9XtStOmuRHYEKlKTTviFpXU2CBJCtuZQZ5EClvR6GKat27RWJnqaxpn2E34QMtYCk7O6lWP4l4R5rqPZnpDEWZDOZmwM9ZmocKYjBwMiRuT3rGbXnXfr/kzsb8QzGEf5qr3qu9hPxV5gpqE4tZ2Aj+jbsENSaFwUg5zixkXIz7AjkPNE7TdYjbThB04p8/i1Lilic3c7ycKnlg7TiK3M+E0tL+zqflf1skpPu0WUmc5oRZfD8W5YpSyaUGsLw0KUmMHXBjp/srEkBsuyNVYdiUEv0f+C83jWuDXgisfSrALe3AIAZzAOVxCHRog4B4e4RlevAfvyXv9qmvBm/e2Az/kvX0CqcqdAQ==</latexit> <latexit sha1_base64="rVnxfAOCRYUasCjXywPAGTPDjy0=">AAACE3icbVC7SgNBFJ2NrxhfUUubwSCIRdi1MVgFbCwjmAdmQ5id3E2GzM4uM3eVsOQfbPwVGwtFbG3s/Bsnj0ITD1w4nHPvzL0nSKQw6LrfTm5ldW19I79Z2Nre2d0r7h80TJxqDnUey1i3AmZACgV1FCihlWhgUSChGQyvJn7zHrQRsbrFUQKdiPWVCAVnaKVu8SzsZn6qeqAnL2R+MhDjMb2kLepLCFGL/gCZ1vEDvesWS27ZnYIuE29OSmSOWrf45fdinkagkEtmTNtzE+xkTKPgEsYFPzWQMD5kfWhbqlgEppNNbxrTE6v0aBhrWwrpVP09kbHImFEU2M6I4cAsehPxP6+dYljpZEIlKYLis4/CVFKM6SQg2hMaOMqRJYxrYXelfMA042hjLNgQvMWTl0njvOy5Ze/GLVUr8zjy5Igck1PikQtSJdekRuqEk0fyTF7Jm/PkvDjvzsesNefMZw7JHzifP3MknnE=</latexit> <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> <latexit sha1_base64="1ItMHwp0WMmNzl5s1sivEBCa348=">AAACE3icbVC7SgNBFJ31GeMramkzGASxCLsiGKwCNpYRzAOzIcxO7iZDZmeXmbtKWPIPNv6KjYUitjZ2/o2TR6GJBy4czrl35t4TJFIYdN1vZ2l5ZXVtPbeR39za3tkt7O3XTZxqDjUey1g3A2ZACgU1FCihmWhgUSChEQyuxn7jHrQRsbrFYQLtiPWUCAVnaKVO4TTsZH6quqDHL2R+0hejEb2kTepLCFGLXh+Z1vEDvesUim7JnYAuEm9GimSGaqfw5XdjnkagkEtmTMtzE2xnTKPgEkZ5PzWQMD5gPWhZqlgEpp1NbhrRY6t0aRhrWwrpRP09kbHImGEU2M6IYd/Me2PxP6+VYlhuZ0IlKYLi04/CVFKM6Tgg2hUaOMqhJYxrYXelvM8042hjzNsQvPmTF0n9rOS5Je/mvFgpz+LIkUNyRE6IRy5IhVyTKqkRTh7JM3klb86T8+K8Ox/T1iVnNnNA/sD5/AF0ZJ51</latexit> , : <latexit sha1_base64="dBcm1fZv2oaqPrYQfdj1FFHOzyM=">AAACDXicdVDLSgMxFM3UV62vqks3wSq4kCHjs7oquHFZwT6gM5RMJm1DM5khyQhl6A+48VfcuFDErXt3/o2ZaQUreiBwOOcebu7xY86URujTKszNLywuFZdLK6tr6xvlza2mihJJaINEPJJtHyvKmaANzTSn7VhSHPqctvzhVea37qhULBK3ehRTL8R9wXqMYG2kbnnPTURAZRZP3XjAxodwRlFsDC+75QqyT5FzcYYgslGOnFSdYwc6U6UCpqh3yx9uEJEkpEITjpXqOCjWXoqlZoTTcclNFI0xGeI+7RgqcEiVl+bXjOG+UQLYi6R5QsNc/ZlIcajUKPTNZIj1QP32MvEvr5PoXtVLmYgTTQWZLOolHOoIZtXAgElKNB8Zgolk5q+QDLDERJsCS6aE70vh/6R5ZDvIdm5OKrXqtI4i2AG74AA44BzUwDWogwYg4B48gmfwYj1YT9ar9TYZLVjTzDaYgfX+BU5qnEo=</latexit> <latexit sha1_base64="dBcm1fZv2oaqPrYQfdj1FFHOzyM=">AAACDXicdVDLSgMxFM3UV62vqks3wSq4kCHjs7oquHFZwT6gM5RMJm1DM5khyQhl6A+48VfcuFDErXt3/o2ZaQUreiBwOOcebu7xY86URujTKszNLywuFZdLK6tr6xvlza2mihJJaINEPJJtHyvKmaANzTSn7VhSHPqctvzhVea37qhULBK3ehRTL8R9wXqMYG2kbnnPTURAZRZP3XjAxodwRlFsDC+75QqyT5FzcYYgslGOnFSdYwc6U6UCpqh3yx9uEJEkpEITjpXqOCjWXoqlZoTTcclNFI0xGeI+7RgqcEiVl+bXjOG+UQLYi6R5QsNc/ZlIcajUKPTNZIj1QP32MvEvr5PoXtVLmYgTTQWZLOolHOoIZtXAgElKNB8Zgolk5q+QDLDERJsCS6aE70vh/6R5ZDvIdm5OKrXqtI4i2AG74AA44BzUwDWogwYg4B48gmfwYj1YT9ar9TYZLVjTzDaYgfX+BU5qnEo=</latexit> <latexit sha1_base64="dBcm1fZv2oaqPrYQfdj1FFHOzyM=">AAACDXicdVDLSgMxFM3UV62vqks3wSq4kCHjs7oquHFZwT6gM5RMJm1DM5khyQhl6A+48VfcuFDErXt3/o2ZaQUreiBwOOcebu7xY86URujTKszNLywuFZdLK6tr6xvlza2mihJJaINEPJJtHyvKmaANzTSn7VhSHPqctvzhVea37qhULBK3ehRTL8R9wXqMYG2kbnnPTURAZRZP3XjAxodwRlFsDC+75QqyT5FzcYYgslGOnFSdYwc6U6UCpqh3yx9uEJEkpEITjpXqOCjWXoqlZoTTcclNFI0xGeI+7RgqcEiVl+bXjOG+UQLYi6R5QsNc/ZlIcajUKPTNZIj1QP32MvEvr5PoXtVLmYgTTQWZLOolHOoIZtXAgElKNB8Zgolk5q+QDLDERJsCS6aE70vh/6R5ZDvIdm5OKrXqtI4i2AG74AA44BzUwDWogwYg4B48gmfwYj1YT9ar9TYZLVjTzDaYgfX+BU5qnEo=</latexit> <latexit sha1_base64="dBcm1fZv2oaqPrYQfdj1FFHOzyM=">AAACDXicdVDLSgMxFM3UV62vqks3wSq4kCHjs7oquHFZwT6gM5RMJm1DM5khyQhl6A+48VfcuFDErXt3/o2ZaQUreiBwOOcebu7xY86URujTKszNLywuFZdLK6tr6xvlza2mihJJaINEPJJtHyvKmaANzTSn7VhSHPqctvzhVea37qhULBK3ehRTL8R9wXqMYG2kbnnPTURAZRZP3XjAxodwRlFsDC+75QqyT5FzcYYgslGOnFSdYwc6U6UCpqh3yx9uEJEkpEITjpXqOCjWXoqlZoTTcclNFI0xGeI+7RgqcEiVl+bXjOG+UQLYi6R5QsNc/ZlIcajUKPTNZIj1QP32MvEvr5PoXtVLmYgTTQWZLOolHOoIZtXAgElKNB8Zgolk5q+QDLDERJsCS6aE70vh/6R5ZDvIdm5OKrXqtI4i2AG74AA44BzUwDWogwYg4B48gmfwYj1YT9ar9TYZLVjTzDaYgfX+BU5qnEo=</latexit> X <latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit> <latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit> <latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit> <latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit> Y <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> <latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit> <latexit sha1_base64="e1LNeElORzeLVOBEuJ/6vZ/NssQ=">AAAB3XicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHHZgn1IO5RMetvGZjJDckcoQ3+BGxeK+Lfc+W9MHwttPRD4OCch954oVdKS7397ha3tnd294n7poHx4dFw5KbdskhmBTZGoxHQiblFJjU2SpLCTGuRxpLAdTe7mefsZjZWJfqBpimHMR1oOpeDkrMZjv1L1a/5CbBOCFVRhpXq/8tUbJCKLUZNQ3Npu4KcU5tyQFApnpV5mMeViwkfYdah5jDbMF4PO2IVzBmyYGHc0sYX7+0XOY2unceRuxpzGdj2bm/9l3YyGN2EudZoRarH8aJgpRgmbb80G0qAgNXXAhZFuVibG3HBBrpuSKyFYX3kTWle1wK8FDR+KcAbncAkBXMMt3EMdmiAA4QXe4N178l69j2VdBW/V2yn8kff5A6Psi4o=</latexit> <latexit sha1_base64="e1LNeElORzeLVOBEuJ/6vZ/NssQ=">AAAB3XicbZBLSwMxFIXv1FetVatbN8EiuCozbnQpuHHZgn1IO5RMetvGZjJDckcoQ3+BGxeK+Lfc+W9MHwttPRD4OCch954oVdKS7397ha3tnd294n7poHx4dFw5KbdskhmBTZGoxHQiblFJjU2SpLCTGuRxpLAdTe7mefsZjZWJfqBpimHMR1oOpeDkrMZjv1L1a/5CbBOCFVRhpXq/8tUbJCKLUZNQ3Npu4KcU5tyQFApnpV5mMeViwkfYdah5jDbMF4PO2IVzBmyYGHc0sYX7+0XOY2unceRuxpzGdj2bm/9l3YyGN2EudZoRarH8aJgpRgmbb80G0qAgNXXAhZFuVibG3HBBrpuSKyFYX3kTWle1wK8FDR+KcAbncAkBXMMt3EMdmiAA4QXe4N178l69j2VdBW/V2yn8kff5A6Psi4o=</latexit> <latexit sha1_base64="QsLXIcYRI1n/pxhvEquqWUL1a+M=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGxInc2UhJtLCGRDwMXsrfMwcre3mV3z4Rc+AU2Fhpj60+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/c7T6g0j+W9mSboR3QkecgZNVZqPgzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/WabqV+k8dRhDM4h0vw4BrqcAcNaAEDhGd4hTfn0Xlx3p2PZWvByWdO4Q+czx+1/YzZ</latexit> <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> <latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit> Z <latexit sha1_base64="GVcMqvlue25tqa0uw4YcPnBW1rQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae2oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBuMGM3g==</latexit> <latexit sha1_base64="GVcMqvlue25tqa0uw4YcPnBW1rQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae2oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBuMGM3g==</latexit> <latexit sha1_base64="GVcMqvlue25tqa0uw4YcPnBW1rQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae2oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBuMGM3g==</latexit> <latexit sha1_base64="GVcMqvlue25tqa0uw4YcPnBW1rQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae2oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBuMGM3g==</latexit> g : Y $ Z <latexit sha1_base64="q0Ni4QW8sTaDVcc8+SG3eUnzESo=">AAACE3icbVA9SwNBEN2L3/Hr1NJmMQhiEe5EMFgFbCwVjEZzIext5pIle3vH7pwSjvwHG/+KjYUitjZ2/hs3H4UmPhh4vDezO/PCVAqDnvftFObmFxaXlleKq2vrG5vu1va1STLNocYTmeh6yAxIoaCGAiXUUw0sDiXchL2zoX9zD9qIRF1hP4VmzDpKRIIztFLLPey08iBTbdDDF/IgNWIwoKf0lgYSItSi00WmdfJA71puySt7I9BZ4k9IiUxw0XK/gnbCsxgUcsmMafheis2caRRcwqAYZAZSxnusAw1LFYvBNPPRTQO6b5U2jRJtSyEdqb8nchYb049D2xkz7Jppbyj+5zUyjCrNXKg0Q1B8/FGUSYoJHQZE20IDR9m3hHEt7K6Ud5lmHG2MRRuCP33yLLk+Kvte2b88LlUrkziWyS7ZIwfEJyekSs7JBakRTh7JM3klb86T8+K8Ox/j1oIzmdkhf+B8/gCJZp6C</latexit> <latexit sha1_base64="q0Ni4QW8sTaDVcc8+SG3eUnzESo=">AAACE3icbVA9SwNBEN2L3/Hr1NJmMQhiEe5EMFgFbCwVjEZzIext5pIle3vH7pwSjvwHG/+KjYUitjZ2/hs3H4UmPhh4vDezO/PCVAqDnvftFObmFxaXlleKq2vrG5vu1va1STLNocYTmeh6yAxIoaCGAiXUUw0sDiXchL2zoX9zD9qIRF1hP4VmzDpKRIIztFLLPey08iBTbdDDF/IgNWIwoKf0lgYSItSi00WmdfJA71puySt7I9BZ4k9IiUxw0XK/gnbCsxgUcsmMafheis2caRRcwqAYZAZSxnusAw1LFYvBNPPRTQO6b5U2jRJtSyEdqb8nchYb049D2xkz7Jppbyj+5zUyjCrNXKg0Q1B8/FGUSYoJHQZE20IDR9m3hHEt7K6Ud5lmHG2MRRuCP33yLLk+Kvte2b88LlUrkziWyS7ZIwfEJyekSs7JBakRTh7JM3klb86T8+K8Ox/j1oIzmdkhf+B8/gCJZp6C</latexit> <latexit sha1_base64="q0Ni4QW8sTaDVcc8+SG3eUnzESo=">AAACE3icbVA9SwNBEN2L3/Hr1NJmMQhiEe5EMFgFbCwVjEZzIext5pIle3vH7pwSjvwHG/+KjYUitjZ2/hs3H4UmPhh4vDezO/PCVAqDnvftFObmFxaXlleKq2vrG5vu1va1STLNocYTmeh6yAxIoaCGAiXUUw0sDiXchL2zoX9zD9qIRF1hP4VmzDpKRIIztFLLPey08iBTbdDDF/IgNWIwoKf0lgYSItSi00WmdfJA71puySt7I9BZ4k9IiUxw0XK/gnbCsxgUcsmMafheis2caRRcwqAYZAZSxnusAw1LFYvBNPPRTQO6b5U2jRJtSyEdqb8nchYb049D2xkz7Jppbyj+5zUyjCrNXKg0Q1B8/FGUSYoJHQZE20IDR9m3hHEt7K6Ud5lmHG2MRRuCP33yLLk+Kvte2b88LlUrkziWyS7ZIwfEJyekSs7JBakRTh7JM3klb86T8+K8Ox/j1oIzmdkhf+B8/gCJZp6C</latexit> <latexit sha1_base64="q0Ni4QW8sTaDVcc8+SG3eUnzESo=">AAACE3icbVA9SwNBEN2L3/Hr1NJmMQhiEe5EMFgFbCwVjEZzIext5pIle3vH7pwSjvwHG/+KjYUitjZ2/hs3H4UmPhh4vDezO/PCVAqDnvftFObmFxaXlleKq2vrG5vu1va1STLNocYTmeh6yAxIoaCGAiXUUw0sDiXchL2zoX9zD9qIRF1hP4VmzDpKRIIztFLLPey08iBTbdDDF/IgNWIwoKf0lgYSItSi00WmdfJA71puySt7I9BZ4k9IiUxw0XK/gnbCsxgUcsmMafheis2caRRcwqAYZAZSxnusAw1LFYvBNPPRTQO6b5U2jRJtSyEdqb8nchYb049D2xkz7Jppbyj+5zUyjCrNXKg0Q1B8/FGUSYoJHQZE20IDR9m3hHEt7K6Ud5lmHG2MRRuCP33yLLk+Kvte2b88LlUrkziWyS7ZIwfEJyekSs7JBakRTh7JM3klb86T8+K8Ox/j1oIzmdkhf+B8/gCJZp6C</latexit>
  17. ClimAlign: Unsupervised, generaBve downscaling General downscaling technique via domain alignment

    with normalizing flows [AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurIPS 2018] • Unsupervised : do not need paired maps at low and high resolution • Generative : can sample from posterior over latent representation OR sample conditioned on a low (or high!) resolution map • Intepretable , e.g., via interpolation [Groenke, et al., Climate Informatics 2020]
  18. Outline What is self-supervised learning? Normalizing flows for downscaling geospatial

    data A pretext task for temporal downscaling of geospatial data 22
  19. A pretext task for temporal downscaling [Harilal, Hodge, Subramanian, &

    Monteleoni, 2023] STINT: Self-supervised Temporal Interpolation for Geospatial Data
  20. A pretext task for temporal downscaling [Harilal, Hodge, Subramanian, &

    Monteleoni, 2023] STINT: Self-supervised Temporal InterpolaIon for GeospaIal Data
  21. Summary and Outlook Normalizing flows for spa;al downscaling of geospa;al

    data Does not require temporal alignment of the coarse and fine scale data Works best when data is spaIally aligned A pretext task for temporal downscaling of geospa;al data Works best when input data is spaIally aligned Is there one pretext task for downscaling in both space and ;me? Does it provide features that are useful for other downstream tasks? 28
  22. And many thanks to: Arindam Banerjee, University of Illinois Urbana-Champaign

    Nicolò Cesa-Bianchi, Università degli Studi di Milano Tommaso Cesari, Toulouse School of Economics Guillaume Charpiat, INRIA Saclay Cécile Coléou, Météo-France & CNRS Michael Dechartre, Irstea, Université Grenoble Alpes Nicolas Eckert, Irstea, Université Grenoble Alpes Brandon Finley, University of Lausanne Sophie Giffard-Roisin, IRD Grenoble Brian Groenke, Alfred Wegener InsKtute, Potsdam Nidhin Harilal, University of Colorado Boulder Tommi Jaakkola, MIT Anna Karas, Météo-France & CNRS FaHma Karbou, Météo-France & CNRS Balázs Kégl, Huawei Research & CNRS David Landry, INRIA Paris Luke Madaus, Jupiter Intelligence ScoO McQuade, Amazon Ravi S. Nanjundiah, Indian InsKtute of Tropical Meteorology Moumita Saha, Philips Research India Gavin A. Schmidt, NASA Senior Advisor on Climate Saumya Sinha, NaKonal Renewable Energy Lab Cheng Tang, Amazon Thank you! Climate and Machine Learning Boulder (CLIMB)
  23. @envdatascience An interdisciplinary, open access journal dedicated to the potential

    of artificial intelligence and data science to enhance our understanding of the environment, and to address climate change. Data and methodological scope: Data Science broadly defined, including: Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics Environmental scope, includes: Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry & physics, paleoclimatology) Climate change (including carbon cycle, transportation, energy, and policy) Sustainability and renewable energy (the interaction between human processes and ecosystems, including resource management, transportation, land use, agriculture and food) Biosphere (including ecology, hydrology, oceanography, glaciology, soil science) Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards) Environmental policy and economics www.cambridge.org/eds
  24. Environmental Data Science Innovation & Inclusion Lab NSF’s newest data

    synthesis center, hosted by the University of Colorado Boulder & CIRES, with key partners CyVerse & the University of Oslo A national accelerator linking data, discovery, & decisions