Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AIサービスを用いた研究活動の支援
Search
Uryu Shinya
December 16, 2024
Technology
0
81
生成AIサービスを用いた研究活動の支援
Uryu Shinya
December 16, 2024
Tweet
Share
More Decks by Uryu Shinya
See All by Uryu Shinya
R研究集会(2024)のご案内
s_uryu
1
570
生成AIを用いたサービスの紹介
s_uryu
0
31
生成AIの基礎的事項と社会に与える影響
s_uryu
0
19
Rの機械学習フレームワークの紹介〜tidymodelsを中心に〜 / machine_learning_with_r2024
s_uryu
0
810
地理空間データの機械学習への適用 / machine_learning_for_spatial_data
s_uryu
0
220
mandaRa: R言語ユーザのための新しい知識共有の場 / mandara_tokyor111
s_uryu
2
650
R言語入門 (R-4.3.3 2024年4月版) / introduction to r
s_uryu
8
6.3k
統・再現性・協力: 人為的過誤を防ぎ、未来へ進む策 / Integration, Reproducible, and Collaboration
s_uryu
1
710
Rによる大規模データの処理
s_uryu
2
2.5k
Other Decks in Technology
See All in Technology
論文紹介 ”Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG” @GDG Tokyo
shukob
0
280
AIエージェントについてまとめてみた
pharma_x_tech
20
12k
20250130_『SUUMO』の裏側!第2弾 ~機械学習エンジニアリング編
recruitengineers
PRO
0
430
A Hidden Pitfall of K8s DNS with Spring Webflux
musaprg
0
200
トレードオフスライダーにおける品質について考えてみた
suzuki_tada
3
200
[JAWS-UG栃木]地方だからできたクラウドネイティブ事例大公開! / jawsug_tochigi_tachibana
biatunky
0
170
AWSでRAGを実現する上で感じた3つの大事なこと
ymae
3
780
Kubernetesでメールの大量配信をしている話/k8sjp-20250205
hfukamachi
0
210
CNAPPから考えるAWSガバナンスの実践と最適化
nrinetcom
PRO
1
390
ソフトウェアアーキテクトのための意思決定術: Software Architecture and Decision-Making
snoozer05
PRO
18
4.2k
20250208_OpenAIDeepResearchがやばいという話
doradora09
PRO
0
100
プロダクト観点で考えるデータ基盤の育成戦略 / Growth Strategy of Data Analytics Platforms from a Product Perspective
yamamotoyuta
0
400
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
335
57k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Navigating Team Friction
lara
183
15k
Side Projects
sachag
452
42k
Thoughts on Productivity
jonyablonski
69
4.4k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
Bash Introduction
62gerente
610
210k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Building Adaptive Systems
keathley
39
2.4k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Transcript
ಙౡେֶσβΠϯܕ"*ڭҭݚڀηϯλʔཧֶ෦ ӝੜਅ ੜ"*αʔϏεΛ༻͍ͨ ݚڀ׆ಈͷࢧԉ ݄ྫ"*ݚڀษڧձ
ҙॻ͖ հ͢ΔαʔϏεɺ༰݄࣌Ͱ࣮ߦՄೳͳͷͰ͢ɻ αʔϏε༰มߋʹ͍ɺಉ༷ʹར༻Ͱ͖ͳ͍Մೳੑ͕͋Γ·͢ɻ αʔϏεར༻࣌ར༻نϓϥΠόγʔϙϦγʔΛ֬ೝ͍ͯͩ͘͠͞ɻ ಛʹఏڙ͢Δݚڀʹؔ͢ΔใͷऔΓѻ͍ɺेʹҙ͍ͯͩ͘͠͞ɻ
ݚڀ׆ಈʹੜ"*Λ͍ͬͯ·͔͢ʁ ֶज़ݚڀϓϩηεͷଟ͘ͷ໘Ͱ"*׆༻͕ظ͞ΕΔ ௐࠪ ੳ ཧ ใࠂ ઌߦݚڀ σʔλੳ ϓϩάϥϛϯά ࣥච
ࠪಡ ϙελʔ ϓϨθϯςʔγϣϯ ख๏ ػցֶश Ϩϙʔτ ࠓͷ༰͔Βର֎ ίϛϡχέʔγϣϯ ࣮ ϨϏϡʔ ࠓͷ༰͔Βର֎
༻தͷੜ"*αʔϏεɺΞϓϦέʔγϣϯ ݄ݱࡏ ར༻ස ґଘ /PUFCPPL-. $IBU(15 (FNJOJ ຖ ͨ·ʹ (FOTQBSL
0MMBNB .$1 .$1.PEFM$POUFYU1SPUPDPM (JU)VC$PQJMPU&EVDBUJPOܦ༝Ͱͷར༻ʢ՝ۚαʔϏε͚ͩͲແྉͰ͑Δʣ 1FSQMFYJUZޙड़ͷΩϟϯϖʔϯͰ1SP൛Λແঈར༻த ௐࠪ ੳ ཧ ใࠂ "SD (JU)VC$PQJMPU *NBHF'9 ͍ ߴ͍ /BQLJO"* $IBU1BQFS $POOFDUFE1BQFST 1FSQMFYJUZ $MBVEF (FNNB ༗ঈܖ՝ۚ
Ͳ͏ͬͯจΛ୳͢ɾಡΉʁ ʲ୳͢ʳΞϯςφΛுΔΈ͕ॏཁ w طଘจݙͷ༰ΛѲɺؔΛཧ w "*ݕࡧΤϯδϯʢ1FSQMFYJUZɺ(FOTQBSLɺ(FNJOJ%FFQ3FTFBSDIʣͰͬ͟ ͘Γ֓ཁΛௐΔɺΩʔจɾ૯આʹΞλϦΛ͚ͭΔ w ʢ3FTFBSDI3BCCJUɺ&MJDJU͋Δ͕͍ͬͯͳ͍ʣ w
$POOFDUFE1BQFSTͰΩʔจɾ૯આͷؔੑΛѲ͢Δ w ৽ணจݙͷΩϟονΞοϓ͕՝ w (PPHMF4DIPMBSͰஶऀɺΩʔϫʔυΛొˠϝʔϧ৴ w BS9JWͷτϨϯυจ֤छαʔϏεͰ·ͱΊΒΕΔ w BMQIB9JW w )VHHJOH'BDF w $IBU1BQFS
ɹ1FSQMFYJUZ ֤छ--.Λͱʹͨ͠ͱͨ͠"*ݕࡧΤϯδϯ https://www.perplexity.ai/ (15Λ࢝Ίͱ֤ͨ͠छ--.Λ༻͍ͨग़య͖Σϒݕࡧɾཁɺϖʔδͷ࡞ ΞΧϯτొෆཁͰར༻Մೳɻͨͩ͠ཤྺΒͳ͍ ༗ྉ൛͋Γˠ1SPʢແྉͰ੍ݶ͖Ͱར༻Մɻυϧ݄·ͨυϧʣ https://www.softbank.jp/mobile/service/perplexity-ai/ ιϑτόϯΫɾϫΠϞόΠϧɾ-*/&.0ͷϢʔβʔͰ͋ΕҰؒ1SP͕ແྉ ඞཁͳͷʁ Կ͕ग़དྷΔʁ
ݕࡧൣғΛʮֶज़ʯ ʢ4FNBOUJD4DIPMBSܦ༝ʣʹ੍ݶՄೳ
ɹ$POOFDUFE1BQFST ઌߦɾޙଓݚڀͷάϥϑωοτϫʔΫΛ࡞ %0*BS9JW*%ΛͱʹจݙͷωοτϫʔΫΛߏங ඞཁͳͷʁ Կ͕ग़དྷΔʁ ಛʹͳ͠ จݙͷඃҾ༻݅Λԁͷେ͖͞Ͱදݱ άϥϑ࡞ͷ੍ݶΛղআ͢ΔͨΊʹΞΧϯτొɺແྉ݄݅ https://www.connectedpapers.com
ɹ$IBU1BQFS BS9JWΧϯϑΝϨϯεࢿྉͷϑΥϩʔΞοϓ ࣍Ͱͷ৽ணจͷ·ͱΊʢաڈʣ ඞཁͳͷʁ Կ͕ग़དྷΔʁ ಛʹͳ͠ จݙͷ༰ʹ͍ͭͯਂ۷ΓˠผαʔϏεʢ$IBU%PDʣ ͓ؾʹೖΓNBHOFUػೳͷར༻ʹΞΧϯτొ͕ඞཁ https://chatpaper.com/ NBHOFUػೳɿࢦఆͨ͠τϐοΫʹؔ͢Δจݙͷඥ͚
Ͳ͏ͬͯจΛ୳͢ɾಡΉʁ ʲಡΉʳͱྔͷ্Λࢦ͢ w ͞·͟·ͳಡΈํʢϓϩϯϓτʣ͕͋ΔͷͰɺ༻్ʹదͨ͠ͷΛબͿ w ྫʣམ߹ཅҰࣜɺΩϟϥ͚ɾରࣜ w ϓϩδΣΫτͱͯ͠ϓϩϯϓτɺࢀߟจݙʢจʣΛཧ w ˠ$IBU(15$MBVEFͷϓϩδΣΫτػೳΛར༻ɻՃͰͷ࣭͕Ͱ͖ΔΑ͏ʹ
ɹɹ/PUFCPPL-. ࢿྉʹجͮ͘ௐࠪΛߦ͏"*Ξγελϯτ https://notebooklm.google/ (FNJOJͱϢʔβʔ͔Βͷ֎෦ࣝʹΑΔௐࠪཁɺΦϦδφϧͷϊʔτͷੜ ඞཁͳͷʁ Կ͕ग़དྷΔʁ (PPHMFΞΧϯτʢແྉʣ ϓϥΠόγʔͷอޢʜ ʮೖྗࢿྉϞσϧ͔ΒͷԠʹ͓͚ΔݸਓσʔλΛ༻͠ͳ͍ʯ ϚϧνϞʔμϧରԠʢࢿྉதͷจষͷ΄͔ɺਤදʹ͍ͭͯཧղɺԻग़ྗʣ
จষɺ1%'63-ɺԻϑΝΠϧͳͲͷࢿྉ
ιʔεʹجͮ͘ใఏڙ ఏڙ͞ΕͨιʔεΛཪ͚ͱͯ͠ɺ(FNJOJ͕ճཁΛߦ͏ m b ػցֶशϞσϧʹ͓͚Δ ϞσϧΧʔυͷׂʁ
ιʔεͰ۩ମతͳ σʔλΧʔυͷ ීٴྫڍ͛ΒΕ͍ͯ·ͤΜ͕ʜ σʔλΧʔυͲͷఔ ීٴ͍ͯ͠Δͷ͔ ϞσϧΧʔυͷओͳతʢத ུʣɻ͜ͷจॻԽʹ͍͔ͭ͘ͷॏ ཁͳଆ໘͕͋Γ·͢ɻᶅᶇᶈ ˠιʔε͕ॆ࣮͢Δͱճ๛͔ʹͳΔ ˠΒͳ͍͜ͱΒͳ͍ͱݴ͑Δ ۩ମతͳݴٴՕॴʢࠜڌʣΛදࣔ
ϙουΩϟετ෩ͷιʔεʹجͮ֓͘ཁઆ໌ "*ಉ࢜ͷରʢӳޠͷΈʣΛੜ ରʹࢀՃՄೳʂ มߋɺμϯϩʔυ͕Մೳ ͍ɺօ͞Μɺ͖ͬͯ·ͨ͠ɻࠓօ͞ΜͷͨΊʹɺͪΐͬͱ"*Ͱॏཁͳ͜ͱΛਂ۷ Γ͍͖ͯ͠·͢ɻͦΕϞσϧΧʔυͱ͍͏ͷͰ͢ɻ ϞσϧΧʔυɻ͍ɻ ӫཆදࣔͷϥϕϧΈ͍ͨͳͷΛΠϝʔδ͍ͯͩ͘͠͞ɻ ͋͋ɺͳΔ΄Ͳɻ͍ɻͰɺͦͷڧྗͳΞϧΰϦζϜʹ͍ͭͯࢲ͍ͨͪͭʹ͠ ͯ·͢
ΑͶɻ ͋ͷɺӫཆදࣔϥϕϧͬͯɺ݁ߏࢀߟʹͳΓ·͢ ΑͶɻಛʹɺͬͱ݈߁తͳબΛ ͍ͨ͠߹ɻ ͦ͏Ͱ͢Ͷɺͦͷ௨ΓͰ͢ɻ ͦͯ͠ಉ͡ߟ͕͑͜͜ʹͯ·Γ·͢ɻ͋ͳ͕͍ͨ͢͝ςΫ ϊϩδʔʹৄ͍͠ਓͩΖ ͏ͱɺ͋Δ͍ͨͩ"*͕पΓʹͲΜͳӨڹΛ༩͍͑ͯΔͷ͔Γ͍ͨਓͩΖ͏ͱɺ"*Ϟ σϧͷυΩϡϝϯτํ๏ΛΔ͜ͱຊʹॏཁͰ͢ɻ ͦ͏Ͱ͢Ͷɻ ࠓղ͍͖ͯ͘͠ݚڀ͕͍͔ͭ͋͘Γ·͢ɻϞσϧΧʔυΛԿઍ݅ੳͨ͠จ ɺ"*͕ࣗϞσϧΧʔυΛੜ͢ΔͷΛͲ͏ͬͯࢧԉͰ͖Δ͔ͳͲͰ͢ɻ ͍͢͝Ͱ͢Ͷɻ ͋͞ɺγʔτϕϧτΛకΊ͍ͯͩ͘͞ɻັྗతͳཱྀʹͳΓ·͢Αɻ·ͣɺϞσϧΧʔυͱ ҰମԿͳͷ͔Λఆٛ͢Δ͜ͱ͔Β࢝Ί·͠ΐ͏ɻ ʜ (FNJOJͰจࣈى͜͠ˍ༁ͨ͠ͷ
/PUFCPPL-.ͷ͍ํ ·ͣ༻ޠΛ֮͑Α͏ දࣔɾग़ྗͷݴޠ(PPHMFΞΧϯτͷݴޠઃఆʹґଘ͢Δ ྫʣӳޠΞΧϯτͰʮຊޠʯͰνϟοτˠӳޠɾग़ྗӳޠ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹʢೖྗจͷ༁ࣗಈͰߦΘΕΔʣ ιʔεʢ֎෦ࣝʣ ϊʔτʢϝϞʣ ͭͷιʔε.#·Ͱɻ߹ܭ·ͰͷιʔεΛՃՄೳ ϊʔτϒοΫͰϞσϧ͔ΒͷԠΛه ϊʔτϒοΫ
/PUFCPPL-.ͰͷϓϩδΣΫτͱͯ͠ѻΘΕΔɻ্ݶ
/PUFCPPL-.ͷ͍ํ ιʔεͷՃͱνϟοτ͔ΒͷϝϞԽͷྲྀΕΛ֮͑Α͏ ΧϥϜͷ6* ιʔεΛՃ͢Δͱ ࣗಈతʹ ϊʔτϒοΫ໊ɺ ֓ཁ͕ੜ͞ΕΔɻ
/PUFCPPL-.ͷ͍ํ ιʔεͷՃͱνϟοτ͔ΒͷϝϞԽͷྲྀΕΛ֮͑Α͏ ιʔεͷ༰ʹؔ͢Δ ͍߹ΘͤΛ νϟοτཝͰߦ͏ ιʔεʹجͮ͘ ࠜڌจষͷग़ྗΛ ϝϞͱͯ͠อଘ
/PUFCPPL-.ͷߦํ ༗ྉϓϥϯͷొɺڝ߹ͷग़ݱ 1MVTϓϥϯ ߴͳνϟοτઃఆɺڞ༗Φϓγϣϯ ݸਓ͚ʹ্ظ͔Βఏڙ༧ఆ ʢ(PPHMF0OF"*1SFNJVNʹؚ·ΕΔˠ(FNJOJ"EWBODFE͓͑ͯಘʂʣ ϊʔτϒοΫɺιʔεʢˠʣͷ্ݶ૿Ճ ։ൃϝϯόʔͷ IUUQTUFDIDSVODIDPNLFZMFBEFST CFIJOEHPPHMFTWJSBMOPUFCPPLMNBSFMFBWJOHUP
DSFBUFUIFJSPXOTUBSUVQ ϦʔμʔɺσβΠφΛؚΉ໊͕ ελʔτΞοϓۀ