Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AIサービスを用いた研究活動の支援
Search
Uryu Shinya
December 16, 2024
Technology
0
180
生成AIサービスを用いた研究活動の支援
Uryu Shinya
December 16, 2024
Tweet
Share
More Decks by Uryu Shinya
See All by Uryu Shinya
R研究集会(2024)のご案内
s_uryu
1
680
生成AIを用いたサービスの紹介
s_uryu
1
200
生成AIの基礎的事項と社会に与える影響
s_uryu
0
57
Rの機械学習フレームワークの紹介〜tidymodelsを中心に〜 / machine_learning_with_r2024
s_uryu
0
1.1k
地理空間データの機械学習への適用 / machine_learning_for_spatial_data
s_uryu
0
330
mandaRa: R言語ユーザのための新しい知識共有の場 / mandara_tokyor111
s_uryu
2
740
R言語入門 (R-4.3.3 2024年4月版) / introduction to r
s_uryu
7
7k
統・再現性・協力: 人為的過誤を防ぎ、未来へ進む策 / Integration, Reproducible, and Collaboration
s_uryu
1
800
Rによる大規模データの処理
s_uryu
2
2.9k
Other Decks in Technology
See All in Technology
マルチドライブアーキテクチャ: 複数の駆動力でプロダクトを前進させる
knih
0
11k
ローカルLLM基礎知識 / local LLM basics 2025
kishida
23
8.8k
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
2.8k
ABEMAのCM配信を支えるスケーラブルな分散カウンタの実装
hono0130
4
1.1k
OSだってコンテナしたい❗Image Modeが切り拓くLinux OS運用の新時代
tsukaman
0
130
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
960
The Complete Android UI Testing Landscape: From Journey to Traditional Approaches
alexzhukovich
1
120
生成AI時代に若手エンジニアが最初に覚えるべき内容と、その学習法
starfish719
2
630
Building AI Applications with Java, LLMs, and Spring AI
thomasvitale
1
250
[続・営業向け 誰でも話せるOCI セールストーク] AWSよりOCIの優位性が分からない編(2025年11月21日開催)
oracle4engineer
PRO
1
130
TypeScript×CASLでつくるSaaSの認可 / Authz with CASL
saka2jp
2
140
2025 DORA Reportから読み解く!AIが映し出す、成果を出し続ける組織の共通点 #開発生産性_findy
takabow
0
380
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Become a Pro
speakerdeck
PRO
30
5.6k
Automating Front-end Workflow
addyosmani
1371
200k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Rails Girls Zürich Keynote
gr2m
95
14k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Transcript
ಙౡେֶσβΠϯܕ"*ڭҭݚڀηϯλʔཧֶ෦ ӝੜਅ ੜ"*αʔϏεΛ༻͍ͨ ݚڀ׆ಈͷࢧԉ ݄ྫ"*ݚڀษڧձ
ҙॻ͖ հ͢ΔαʔϏεɺ༰݄࣌Ͱ࣮ߦՄೳͳͷͰ͢ɻ αʔϏε༰มߋʹ͍ɺಉ༷ʹར༻Ͱ͖ͳ͍Մೳੑ͕͋Γ·͢ɻ αʔϏεར༻࣌ར༻نϓϥΠόγʔϙϦγʔΛ֬ೝ͍ͯͩ͘͠͞ɻ ಛʹఏڙ͢Δݚڀʹؔ͢ΔใͷऔΓѻ͍ɺेʹҙ͍ͯͩ͘͠͞ɻ
ݚڀ׆ಈʹੜ"*Λ͍ͬͯ·͔͢ʁ ֶज़ݚڀϓϩηεͷଟ͘ͷ໘Ͱ"*׆༻͕ظ͞ΕΔ ௐࠪ ੳ ཧ ใࠂ ઌߦݚڀ σʔλੳ ϓϩάϥϛϯά ࣥච
ࠪಡ ϙελʔ ϓϨθϯςʔγϣϯ ख๏ ػցֶश Ϩϙʔτ ࠓͷ༰͔Βର֎ ίϛϡχέʔγϣϯ ࣮ ϨϏϡʔ ࠓͷ༰͔Βର֎
༻தͷੜ"*αʔϏεɺΞϓϦέʔγϣϯ ݄ݱࡏ ར༻ස ґଘ /PUFCPPL-. $IBU(15 (FNJOJ ຖ ͨ·ʹ (FOTQBSL
0MMBNB .$1 .$1.PEFM$POUFYU1SPUPDPM (JU)VC$PQJMPU&EVDBUJPOܦ༝Ͱͷར༻ʢ՝ۚαʔϏε͚ͩͲແྉͰ͑Δʣ 1FSQMFYJUZޙड़ͷΩϟϯϖʔϯͰ1SP൛Λແঈར༻த ௐࠪ ੳ ཧ ใࠂ "SD (JU)VC$PQJMPU *NBHF'9 ͍ ߴ͍ /BQLJO"* $IBU1BQFS $POOFDUFE1BQFST 1FSQMFYJUZ $MBVEF (FNNB ༗ঈܖ՝ۚ
Ͳ͏ͬͯจΛ୳͢ɾಡΉʁ ʲ୳͢ʳΞϯςφΛுΔΈ͕ॏཁ w طଘจݙͷ༰ΛѲɺؔΛཧ w "*ݕࡧΤϯδϯʢ1FSQMFYJUZɺ(FOTQBSLɺ(FNJOJ%FFQ3FTFBSDIʣͰͬ͟ ͘Γ֓ཁΛௐΔɺΩʔจɾ૯આʹΞλϦΛ͚ͭΔ w ʢ3FTFBSDI3BCCJUɺ&MJDJU͋Δ͕͍ͬͯͳ͍ʣ w
$POOFDUFE1BQFSTͰΩʔจɾ૯આͷؔੑΛѲ͢Δ w ৽ணจݙͷΩϟονΞοϓ͕՝ w (PPHMF4DIPMBSͰஶऀɺΩʔϫʔυΛొˠϝʔϧ৴ w BS9JWͷτϨϯυจ֤छαʔϏεͰ·ͱΊΒΕΔ w BMQIB9JW w )VHHJOH'BDF w $IBU1BQFS
ɹ1FSQMFYJUZ ֤छ--.Λͱʹͨ͠ͱͨ͠"*ݕࡧΤϯδϯ https://www.perplexity.ai/ (15Λ࢝Ίͱ֤ͨ͠छ--.Λ༻͍ͨग़య͖Σϒݕࡧɾཁɺϖʔδͷ࡞ ΞΧϯτొෆཁͰར༻Մೳɻͨͩ͠ཤྺΒͳ͍ ༗ྉ൛͋Γˠ1SPʢແྉͰ੍ݶ͖Ͱར༻Մɻυϧ݄·ͨυϧʣ https://www.softbank.jp/mobile/service/perplexity-ai/ ιϑτόϯΫɾϫΠϞόΠϧɾ-*/&.0ͷϢʔβʔͰ͋ΕҰؒ1SP͕ແྉ ඞཁͳͷʁ Կ͕ग़དྷΔʁ
ݕࡧൣғΛʮֶज़ʯ ʢ4FNBOUJD4DIPMBSܦ༝ʣʹ੍ݶՄೳ
ɹ$POOFDUFE1BQFST ઌߦɾޙଓݚڀͷάϥϑωοτϫʔΫΛ࡞ %0*BS9JW*%ΛͱʹจݙͷωοτϫʔΫΛߏங ඞཁͳͷʁ Կ͕ग़དྷΔʁ ಛʹͳ͠ จݙͷඃҾ༻݅Λԁͷେ͖͞Ͱදݱ άϥϑ࡞ͷ੍ݶΛղআ͢ΔͨΊʹΞΧϯτొɺແྉ݄݅ https://www.connectedpapers.com
ɹ$IBU1BQFS BS9JWΧϯϑΝϨϯεࢿྉͷϑΥϩʔΞοϓ ࣍Ͱͷ৽ணจͷ·ͱΊʢաڈʣ ඞཁͳͷʁ Կ͕ग़དྷΔʁ ಛʹͳ͠ จݙͷ༰ʹ͍ͭͯਂ۷ΓˠผαʔϏεʢ$IBU%PDʣ ͓ؾʹೖΓNBHOFUػೳͷར༻ʹΞΧϯτొ͕ඞཁ https://chatpaper.com/ NBHOFUػೳɿࢦఆͨ͠τϐοΫʹؔ͢Δจݙͷඥ͚
Ͳ͏ͬͯจΛ୳͢ɾಡΉʁ ʲಡΉʳͱྔͷ্Λࢦ͢ w ͞·͟·ͳಡΈํʢϓϩϯϓτʣ͕͋ΔͷͰɺ༻్ʹదͨ͠ͷΛબͿ w ྫʣམ߹ཅҰࣜɺΩϟϥ͚ɾରࣜ w ϓϩδΣΫτͱͯ͠ϓϩϯϓτɺࢀߟจݙʢจʣΛཧ w ˠ$IBU(15$MBVEFͷϓϩδΣΫτػೳΛར༻ɻՃͰͷ࣭͕Ͱ͖ΔΑ͏ʹ
ɹɹ/PUFCPPL-. ࢿྉʹجͮ͘ௐࠪΛߦ͏"*Ξγελϯτ https://notebooklm.google/ (FNJOJͱϢʔβʔ͔Βͷ֎෦ࣝʹΑΔௐࠪཁɺΦϦδφϧͷϊʔτͷੜ ඞཁͳͷʁ Կ͕ग़དྷΔʁ (PPHMFΞΧϯτʢແྉʣ ϓϥΠόγʔͷอޢʜ ʮೖྗࢿྉϞσϧ͔ΒͷԠʹ͓͚ΔݸਓσʔλΛ༻͠ͳ͍ʯ ϚϧνϞʔμϧରԠʢࢿྉதͷจষͷ΄͔ɺਤදʹ͍ͭͯཧղɺԻग़ྗʣ
จষɺ1%'63-ɺԻϑΝΠϧͳͲͷࢿྉ
ιʔεʹجͮ͘ใఏڙ ఏڙ͞ΕͨιʔεΛཪ͚ͱͯ͠ɺ(FNJOJ͕ճཁΛߦ͏ m b ػցֶशϞσϧʹ͓͚Δ ϞσϧΧʔυͷׂʁ
ιʔεͰ۩ମతͳ σʔλΧʔυͷ ීٴྫڍ͛ΒΕ͍ͯ·ͤΜ͕ʜ σʔλΧʔυͲͷఔ ීٴ͍ͯ͠Δͷ͔ ϞσϧΧʔυͷओͳతʢத ུʣɻ͜ͷจॻԽʹ͍͔ͭ͘ͷॏ ཁͳଆ໘͕͋Γ·͢ɻᶅᶇᶈ ˠιʔε͕ॆ࣮͢Δͱճ๛͔ʹͳΔ ˠΒͳ͍͜ͱΒͳ͍ͱݴ͑Δ ۩ମతͳݴٴՕॴʢࠜڌʣΛදࣔ
ϙουΩϟετ෩ͷιʔεʹجͮ֓͘ཁઆ໌ "*ಉ࢜ͷରʢӳޠͷΈʣΛੜ ରʹࢀՃՄೳʂ มߋɺμϯϩʔυ͕Մೳ ͍ɺօ͞Μɺ͖ͬͯ·ͨ͠ɻࠓօ͞ΜͷͨΊʹɺͪΐͬͱ"*Ͱॏཁͳ͜ͱΛਂ۷ Γ͍͖ͯ͠·͢ɻͦΕϞσϧΧʔυͱ͍͏ͷͰ͢ɻ ϞσϧΧʔυɻ͍ɻ ӫཆදࣔͷϥϕϧΈ͍ͨͳͷΛΠϝʔδ͍ͯͩ͘͠͞ɻ ͋͋ɺͳΔ΄Ͳɻ͍ɻͰɺͦͷڧྗͳΞϧΰϦζϜʹ͍ͭͯࢲ͍ͨͪͭʹ͠ ͯ·͢
ΑͶɻ ͋ͷɺӫཆදࣔϥϕϧͬͯɺ݁ߏࢀߟʹͳΓ·͢ ΑͶɻಛʹɺͬͱ݈߁తͳબΛ ͍ͨ͠߹ɻ ͦ͏Ͱ͢Ͷɺͦͷ௨ΓͰ͢ɻ ͦͯ͠ಉ͡ߟ͕͑͜͜ʹͯ·Γ·͢ɻ͋ͳ͕͍ͨ͢͝ςΫ ϊϩδʔʹৄ͍͠ਓͩΖ ͏ͱɺ͋Δ͍ͨͩ"*͕पΓʹͲΜͳӨڹΛ༩͍͑ͯΔͷ͔Γ͍ͨਓͩΖ͏ͱɺ"*Ϟ σϧͷυΩϡϝϯτํ๏ΛΔ͜ͱຊʹॏཁͰ͢ɻ ͦ͏Ͱ͢Ͷɻ ࠓղ͍͖ͯ͘͠ݚڀ͕͍͔ͭ͋͘Γ·͢ɻϞσϧΧʔυΛԿઍ݅ੳͨ͠จ ɺ"*͕ࣗϞσϧΧʔυΛੜ͢ΔͷΛͲ͏ͬͯࢧԉͰ͖Δ͔ͳͲͰ͢ɻ ͍͢͝Ͱ͢Ͷɻ ͋͞ɺγʔτϕϧτΛకΊ͍ͯͩ͘͞ɻັྗతͳཱྀʹͳΓ·͢Αɻ·ͣɺϞσϧΧʔυͱ ҰମԿͳͷ͔Λఆٛ͢Δ͜ͱ͔Β࢝Ί·͠ΐ͏ɻ ʜ (FNJOJͰจࣈى͜͠ˍ༁ͨ͠ͷ
/PUFCPPL-.ͷ͍ํ ·ͣ༻ޠΛ֮͑Α͏ දࣔɾग़ྗͷݴޠ(PPHMFΞΧϯτͷݴޠઃఆʹґଘ͢Δ ྫʣӳޠΞΧϯτͰʮຊޠʯͰνϟοτˠӳޠɾग़ྗӳޠ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹʢೖྗจͷ༁ࣗಈͰߦΘΕΔʣ ιʔεʢ֎෦ࣝʣ ϊʔτʢϝϞʣ ͭͷιʔε.#·Ͱɻ߹ܭ·ͰͷιʔεΛՃՄೳ ϊʔτϒοΫͰϞσϧ͔ΒͷԠΛه ϊʔτϒοΫ
/PUFCPPL-.ͰͷϓϩδΣΫτͱͯ͠ѻΘΕΔɻ্ݶ
/PUFCPPL-.ͷ͍ํ ιʔεͷՃͱνϟοτ͔ΒͷϝϞԽͷྲྀΕΛ֮͑Α͏ ΧϥϜͷ6* ιʔεΛՃ͢Δͱ ࣗಈతʹ ϊʔτϒοΫ໊ɺ ֓ཁ͕ੜ͞ΕΔɻ
/PUFCPPL-.ͷ͍ํ ιʔεͷՃͱνϟοτ͔ΒͷϝϞԽͷྲྀΕΛ֮͑Α͏ ιʔεͷ༰ʹؔ͢Δ ͍߹ΘͤΛ νϟοτཝͰߦ͏ ιʔεʹجͮ͘ ࠜڌจষͷग़ྗΛ ϝϞͱͯ͠อଘ
/PUFCPPL-.ͷߦํ ༗ྉϓϥϯͷొɺڝ߹ͷग़ݱ 1MVTϓϥϯ ߴͳνϟοτઃఆɺڞ༗Φϓγϣϯ ݸਓ͚ʹ্ظ͔Βఏڙ༧ఆ ʢ(PPHMF0OF"*1SFNJVNʹؚ·ΕΔˠ(FNJOJ"EWBODFE͓͑ͯಘʂʣ ϊʔτϒοΫɺιʔεʢˠʣͷ্ݶ૿Ճ ։ൃϝϯόʔͷ IUUQTUFDIDSVODIDPNLFZMFBEFST CFIJOEHPPHMFTWJSBMOPUFCPPLMNBSFMFBWJOHUP
DSFBUFUIFJSPXOTUBSUVQ ϦʔμʔɺσβΠφΛؚΉ໊͕ ελʔτΞοϓۀ