Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Perceiver: General Perception with Iterative [輪...
Search
shibutani
June 22, 2022
Research
0
110
Perceiver: General Perception with Iterative [輪講発表資料]
Perceiver: General Perception with Iterativeに関する輪講発表資料
shibutani
June 22, 2022
Tweet
Share
More Decks by shibutani
See All by shibutani
はじめてのOSS開発からみえたGo言語の強み
shibukazu
4
1.2k
全自動コードレビューの夢 〜実際に活用されるAIコードレビューの実現に向けて〜
shibukazu
11
4.7k
Hybrid Autoregressive Transducer [輪講発表資料]
shibukazu
0
320
Other Decks in Research
See All in Research
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
300
アニメにおける宇宙猫ミームとその表現
yttrium173340
0
110
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
670
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2k
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
250
能動適応的実験計画
masakat0
2
900
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
110
Integrating Static Optimization and Dynamic Nature in JavaScript (GPCE 2025)
tadd
0
110
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
460
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
130
Combinatorial Search with Generators
kei18
0
1.1k
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
290
Featured
See All Featured
Gamification - CAS2011
davidbonilla
81
5.5k
Fireside Chat
paigeccino
41
3.7k
Site-Speed That Sticks
csswizardry
13
930
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
How GitHub (no longer) Works
holman
315
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Language of Interfaces
destraynor
162
25k
Context Engineering - Making Every Token Count
addyosmani
8
310
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Transcript
Perceiver: General Perception with Iterative Attention [Jaegle, Gimeno+ 2020] 京都大学
音声メディア研究室 M1 渋谷和樹 1
これまではモダリティに依存したアーキテクチャが主流 ⇒アーキテクチャがモダリティにロックインされる Transformerはモダリティに依存しない Transformerの計算量は入力インデックスの二乗に比例 任意の入力長に対応できるTransformerベースのアーキテクチャが必要 ⇒Perceiverの登場 Introduction 2
Perceiver 3
Transformerベースのモダリティ非依存アーキテクチャ CrossAttentionによってTransformerの計算量を削減 画像・音声・点群において優れた性能 Perceiver 4
アーキテクチャ図 計算量 Cross Attention: Transformer: アーキテクチャ(1ブロック) O(M × N ×
D ) ≃ ′ M≪N O(N × D ) ′ O(L × M × 2 D ) 2 5
Attentionは入力系列の順序に依存しない Transformerと同様の位置エンコーディングを利用 p = i,2k sin(f πx
) k d p = i,2k+1 cos(f πx ) k d : ハイパーパラメータ : 次元 における位置( ) Transformerと異なり、加算ではなく入力へ連結する 位置エンコーディング f k x d d −1 ∼ 1 6
結果(Image) 7
実験設定 データセット: ImageNet ピクセルレベルの並び替えあり・並び替えなしで実験 評価指標: 予測ラベルの正解率 アーキテクチャ: (CrossAttention + TransformerEncoder
* 6) * 8 入力ベクトル: 50176x3 潜在ベクトル: 512x1024 結果(Image) 8
比較モデル ResNet-50: レイヤー数50のCNNベースモデル ViT-B-16: Transformerベースモデル 入力の処理に16x16の畳み込みを利用 Transformer: 64x64にダウンサンプリングした上で入力 結果(Image -
並び替えなしの場合) 9
結果 モダリティの仮定をせずにベースラインと互角の性能を発揮 ベースラインに位置エンコーディングを入力しても性能は向上しなかった 結果(Image - 並び替えなしの場合) 10
設定 各画像内のピクセルを同一の規則に従って並び替える 帰納バイアスの利用を防ぐ 並び替え前に位置エンコーディングを行う 位置エンコーディングからピクセル同士の関連は学習可能 Learned pos: 位置エンコーディングを学習する inputRF: 入力レイヤーにおける受容野の大きさ
結果(Image - 並び替えありの場合) 11
結果 モダリティを仮定しないTransformerやPerceiverでは性能が悪化しなかった ViTは性能が劣化しづらかった ViTで採用されている畳み込みフィルターはResNet50より大きいから? 最終的にTransformerでパッチ間の関係を見ていることも関係してそう? 結果(Image - 並び替えありの場合) 12
結果(Audio and Video) 13
実験設定 データセット: AudioSet Audio, Video, Audio&Videoで実験 評価指標: meanAveragePrecision アーキテクチャ: (CrossAttention+TransformerEncoder*8)*2
入力ベクトル 生音声: 480x128 メルスペクトログラム: 4800x1 動画: 12544x128 潜在ベクトル: サイズ記載なし 結果(Audio and Video) 14
結果 いずれの入力パターンでもほとんどの比較手法と同等以上の性能 CNN-14に関してはbalancingおよびmixupなどの前処理を除くと性能が下回った Attention AV-fusionとの違いは今後の調査課題 結果(Audio and Video) 15
結果(Point clouds) 16
実験設定 データセット: ModelNet40 評価指標: 予測ラベルの正解率 アーキテクチャ: (CrossAttention+TransformerEncoder*6)*2 入力ベクトル: サイズ記載なし(おそらく単純にflatten?) 潜在ベクトル:
サイズ記載なし 結果(Point cloulds) 17
結果 PointNet++以外の手法より優れていた PointNet++ではドメイン知識に基づいたデータ拡張や特徴量エンジニアリングを行って いるため比較対象としては不適? 結果(Point cloulds) 18
まとめ 19
TransformerベースのPerceiverを提案 Cross-Attentionの利用により、Transformerの計算量を削減 画像・音声・点群いずれにおいても極めて高い性能を発揮 モダリティ特有のデータ拡張や位置エンコーディングへの依存を減らすのが今後の課題 まとめ 20