Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Perceiver: General Perception with Iterative [輪...
Search
shibutani
June 22, 2022
Research
0
110
Perceiver: General Perception with Iterative [輪講発表資料]
Perceiver: General Perception with Iterativeに関する輪講発表資料
shibutani
June 22, 2022
Tweet
Share
More Decks by shibutani
See All by shibutani
はじめてのOSS開発からみえたGo言語の強み
shibukazu
4
1.3k
全自動コードレビューの夢 〜実際に活用されるAIコードレビューの実現に向けて〜
shibukazu
11
5.2k
Hybrid Autoregressive Transducer [輪講発表資料]
shibukazu
0
350
Other Decks in Research
See All in Research
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
310
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
110
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
450
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
270
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
170
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
230
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
3
1k
Featured
See All Featured
A Tale of Four Properties
chriscoyier
162
23k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
99
Documentation Writing (for coders)
carmenintech
77
5.2k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
How to make the Groovebox
asonas
2
1.9k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
54
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
92
Designing Experiences People Love
moore
143
24k
How GitHub (no longer) Works
holman
316
140k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Transcript
Perceiver: General Perception with Iterative Attention [Jaegle, Gimeno+ 2020] 京都大学
音声メディア研究室 M1 渋谷和樹 1
これまではモダリティに依存したアーキテクチャが主流 ⇒アーキテクチャがモダリティにロックインされる Transformerはモダリティに依存しない Transformerの計算量は入力インデックスの二乗に比例 任意の入力長に対応できるTransformerベースのアーキテクチャが必要 ⇒Perceiverの登場 Introduction 2
Perceiver 3
Transformerベースのモダリティ非依存アーキテクチャ CrossAttentionによってTransformerの計算量を削減 画像・音声・点群において優れた性能 Perceiver 4
アーキテクチャ図 計算量 Cross Attention: Transformer: アーキテクチャ(1ブロック) O(M × N ×
D ) ≃ ′ M≪N O(N × D ) ′ O(L × M × 2 D ) 2 5
Attentionは入力系列の順序に依存しない Transformerと同様の位置エンコーディングを利用 p = i,2k sin(f πx
) k d p = i,2k+1 cos(f πx ) k d : ハイパーパラメータ : 次元 における位置( ) Transformerと異なり、加算ではなく入力へ連結する 位置エンコーディング f k x d d −1 ∼ 1 6
結果(Image) 7
実験設定 データセット: ImageNet ピクセルレベルの並び替えあり・並び替えなしで実験 評価指標: 予測ラベルの正解率 アーキテクチャ: (CrossAttention + TransformerEncoder
* 6) * 8 入力ベクトル: 50176x3 潜在ベクトル: 512x1024 結果(Image) 8
比較モデル ResNet-50: レイヤー数50のCNNベースモデル ViT-B-16: Transformerベースモデル 入力の処理に16x16の畳み込みを利用 Transformer: 64x64にダウンサンプリングした上で入力 結果(Image -
並び替えなしの場合) 9
結果 モダリティの仮定をせずにベースラインと互角の性能を発揮 ベースラインに位置エンコーディングを入力しても性能は向上しなかった 結果(Image - 並び替えなしの場合) 10
設定 各画像内のピクセルを同一の規則に従って並び替える 帰納バイアスの利用を防ぐ 並び替え前に位置エンコーディングを行う 位置エンコーディングからピクセル同士の関連は学習可能 Learned pos: 位置エンコーディングを学習する inputRF: 入力レイヤーにおける受容野の大きさ
結果(Image - 並び替えありの場合) 11
結果 モダリティを仮定しないTransformerやPerceiverでは性能が悪化しなかった ViTは性能が劣化しづらかった ViTで採用されている畳み込みフィルターはResNet50より大きいから? 最終的にTransformerでパッチ間の関係を見ていることも関係してそう? 結果(Image - 並び替えありの場合) 12
結果(Audio and Video) 13
実験設定 データセット: AudioSet Audio, Video, Audio&Videoで実験 評価指標: meanAveragePrecision アーキテクチャ: (CrossAttention+TransformerEncoder*8)*2
入力ベクトル 生音声: 480x128 メルスペクトログラム: 4800x1 動画: 12544x128 潜在ベクトル: サイズ記載なし 結果(Audio and Video) 14
結果 いずれの入力パターンでもほとんどの比較手法と同等以上の性能 CNN-14に関してはbalancingおよびmixupなどの前処理を除くと性能が下回った Attention AV-fusionとの違いは今後の調査課題 結果(Audio and Video) 15
結果(Point clouds) 16
実験設定 データセット: ModelNet40 評価指標: 予測ラベルの正解率 アーキテクチャ: (CrossAttention+TransformerEncoder*6)*2 入力ベクトル: サイズ記載なし(おそらく単純にflatten?) 潜在ベクトル:
サイズ記載なし 結果(Point cloulds) 17
結果 PointNet++以外の手法より優れていた PointNet++ではドメイン知識に基づいたデータ拡張や特徴量エンジニアリングを行って いるため比較対象としては不適? 結果(Point cloulds) 18
まとめ 19
TransformerベースのPerceiverを提案 Cross-Attentionの利用により、Transformerの計算量を削減 画像・音声・点群いずれにおいても極めて高い性能を発揮 モダリティ特有のデータ拡張や位置エンコーディングへの依存を減らすのが今後の課題 まとめ 20