Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-estimation for time-varying treatments(Causal...
Search
Shuntaro Sato
November 25, 2020
Science
0
2.9k
G-estimation for time-varying treatments(Causal inference: What if, Chapter 21-2)
Keywords: 因果推論, Time-varying, G-estimation, Censoring
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
仮説検定とP値
shuntaros
8
9.3k
Target trial emulationの概要
shuntaros
2
2.8k
Win ratio その2
shuntaros
0
450
Win ratioとは何か?
shuntaros
0
2.5k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
880
「回帰分析から分かること」と「変数選択」
shuntaros
16
18k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.3k
自己対照デザイン:ケースクロスオーバーデザイン・ケースタイムコントロールデザイン
shuntaros
1
2.4k
何が知りたいのか?〜どのぐらい?に答える〜(医学統計学・疫学セミナー)
shuntaros
0
2.3k
Other Decks in Science
See All in Science
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
420
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.4k
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
17
7.1k
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
770
Pericarditis Comic
camkdraws
0
1.5k
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
260
地表面抽出の方法であるSMRFについて紹介
kentaitakura
0
160
マクロ経済学の視点で、財政健全化は必要か
ryo18cm
1
120
学術講演会中央大学学員会大分支部
tagtag
0
110
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
710
ベイズ最適化をゼロから
brainpadpr
2
970
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
390
Featured
See All Featured
Gamification - CAS2011
davidbonilla
80
5.1k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Documentation Writing (for coders)
carmenintech
67
4.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
A Tale of Four Properties
chriscoyier
157
23k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
240
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
Thoughts on Productivity
jonyablonski
68
4.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Transcript
G-estimation for time-varying treatments & Censoring Causal Inference: What if
Chapter 21(後半) 担当︓KRSK (@koro485)
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 2
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 3
Time-varying Treatments ⽬的︓複数時点での介⼊の効果 Ø 例︓[!!"#,!""# − !!"%,!""%] Ø 「全員がすべての時点で治療を受けた(always-treat)vsずっ と受けなかった(never-treat)」
Time-fixed Treatments ⽬的︓1時点での介⼊の効果 Ø 例︓[!"# − !"%] Ø 「全員が(ある⼀時点で)治療を受けたvs受けなかった」 4
仮定︓Sequential exchangeability Ø Yā ⫫ Ak | L̄ k ,
A ̅ k-1 Ø Exchangeability for each treatment conditional on past covariate & treatment A0 L1 L0 A1 Y A0 |a0 L1 a0 L0 A1 a0|a1 Ya0,a1 例︓⼆時点の場合 Ø Ya0,a1 ⫫ A1 | L1 ,L0 ,A0 Ø Ya0,a1 ⫫ A0 | L0 5
なぜtime-varying treatmentsか︖ Ø 最適な治療regimeの効果検証(どのように複数時点での介⼊ を続けていけばよいか︖) Ø 曝露因⼦が時間によってで⼤きく変化する/アドヒアランス が悪いとき、time-fixedの"効果”は過⼩推定の可能性あり Ø例︓「ライザップ的⾷⽣活の効果」 6
g-methods Ø g-formula (a.k.a., g-computation) Ø IPW of marginal structural
model Ø g-estimation of structural nested models • Sequential exchangeabilityのもと、time-varying treatmentsの因果効果を推定可能 • 異なるモデルの仮定 7
g-formula for time-varying treatments & ̅ ' [| ̅ =
+ , + = ̅ ] 1 ("% ) (( |+ (*# , ̅ (*# ) ①“過去”を条件付けた アウトカムに対するモデル ②”過去”のjoint distribution に対するモデル(複数) Ø R package: gfoRmula (Lin et al 2019) Ø もしくはICE (iterated conditional expectation) g-computation (e.g., TMLE) 8
̅ + = 1 ("% # 1 (( | ̅
(*# , + ( ) IPW for time-varying treatments ①“過去”を条件付けた各時点の治療に対するモデル E , ! = -. [| ̅ ] ②Marginal Structural Model (過去の治療歴のみを条件づけたweightedアウトカム モデル) Marginal Effectに興味があるとき 9
̅ + = 1 ("% # (( | ̅ (*#
, ) (( | ̅ (*# , + ( ) IPW for time-varying treatments ①“過去”を条件付けた各時点の治療に対するモデル ②Marginal Structural Model (過去の治療歴+Vを条件づけたweightedアウトカム モデル) E , !| = -. [| ̅ , ] ベースライン共変量Vによる効果修飾に興味があるとき ①Vと過去の治療歴を 条件付けた各時点の 治療に対するモデル 10
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 11
g-estimation for time-fixed treatments Ø Conditional effectを推定 Ø Causal “effect”を直接モデル化
(Structural Nested Mean Model) [! − !"%|] = # (Lによる効果修飾なし) [! − !"%|] = # + / ∗ (Lのsubset/L以外のベースライン変数Vによる効果修飾 あり) $POEJUJPOBM&YDIBOHFBCJMJUZ Ya⫫A|L ΛԾఆ 12
g-estimation for time-fixed treatments 1. ! − !"% = #
2. !"% = ! − # = − # (by consistency) 3. H(0) = − 0 6. = 1 , H 0 = % + # H 0 + / L 7. # = 0となる0をgrid searchで⾒つける 4. もし 0 = # なら H(0) = !"% 5. Conditional Exchangeabilityより Ya⫫A|L 13
g-estimation for time-fixed treatments 1. Structural Nested Mean Model [!
− !"%|] = # (Lによる効果修飾なし) 2. Treatment Model = 1 , H 0 = % + # H 0 + / L 14
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 15
g-estimation for time-varying treatments Ø まず⼆時点の場合を考える (p269) Ø Sequential exchangeability
A0 L1 A1 Y A0 |a0 L1 a0 A1 a0|a1 Ya0,a1 Ø Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 16
g-estimation: Step 1 Ø Structural ”Nested” Mean Modelsを設定 1. [!!,!""%
− !!"%,!""%] = % % 2. [!!,!" − !!,!""% # !! = # , % = % = # (## + #/ # + #1 % + #2 % # ) A0 |a0 L1 a0 A1 a0|a1 Ya0,a1 " ͷޮՌͷϞσϧ ͜ͷྫͰ- ͕ͳ͍ʣ " ͷޮՌͷϞσϧ “過去”による効果修飾 Ø . の推定がゴール︕ Ø 各時点の治療のConditional effectを推定 17
① !!"%,!""% = !!,!""% − % % ② !!,!""%= !!,!"
− ## # + #/ # # !! + #1 % # + #2 % # # !! ①+② !!"%,!""%= !!,!" − I J ## # + #/ # # !! + #1 % # + #2 % # # !! − % % g-estimation: Step 2 Ø 個⼈レベルに変換 Ø !!"%,!""% に対する1つの⽅程式をつくる 18
!!"%,!""% = !!,!" − ## # + #/ # #
!! + #1 % # + #2 % # # !! − % % = − ## # + #/ # # + #1 % # + #2 % # # − % % g-estimation: Step 3 Ø ConsistencyでデータとStep2の式をリンク ∗ = − ## ∗ # + #/ ∗ # # + #1 ∗ % # + #2 ∗ % # # − % ∗% Ø (∗)をつくる ະͷύϥϝʔλ 1. ∗͕ܾ·ΕաڈͷA, Lͷσʔλ͔Β (∗)֤ݸਓʹ ରͯ͠ܭࢉՄೳ 2. ∗=ͳΒ(∗) = = !!"%,!""% 19
g-estimation: Step 4 Ø Sequential Exchangeabilityを使う Ø Treatment Modelをつくる Ø
Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 Ø ⫫ A1 | L1 ,A0 Ø ⫫ A0 logit # # , % , ∗ = % + ∗ ( + % + # + # % ) + 8 # ∗ の係数の推定値が0となるような∗(5つの)を⾒つける (Grid Search) logit % ∗ = % + ∗ 20
g-estimation: おまけ Treatment modelを使わないで. を推定可能 !!"%,!""%= − ## # +
#/ # # + #1 % # + #2 % # # − % % E +!,% % , # , # = E % , # , # −#,# # − #,/ # # − #,1 % # − #,2 % # # Ø Ya0,a1 ⫫ A1 | L1 ,A0 Ø Ya0,a1 ⫫ A0 Ø Structural Nested Mean Model Ø Conditional Exchangeability 平均 21
g-estimation: おまけ Ø Treatment modelを使わない推定 Ø Conditional Exchangeabilityより Ø Ya0,a1
⫫ A1 | L1 ,A0 Ø E "!,$ $ , % , % = 0 = E "!,$ $ , % , % = 1 Ø 84 = 84- %,% , 52 = 52- %,% - %,& Ø %,% =0, %,& = 0 E "!,$ $ , % , % = E $ , % , % −%,% % − %,& % % − %,' $ % − %,( $ % % A0 L1 A1 Y "!,$ $, %, % 0 0 0 84 84 0 0 1 84 84-%,% 0 1 0 52 52 0 1 1 52 52-%,% -%,& Table 21.1 (p257) & Table 21.2 (p270)より Ø 現実にはexposure/covariate historyのパターンが多い→モデル Ø Linear modelの場合はclosed form (Technical Point 21.5) 22
g-estimation for time-varying treatments Ø K時点の場合を考える Ø Sequential exchangeability A0
L1 A1 L2 Ø Yā ⫫ Ak | L̄ k , A ̅ k-1 L0 Lk Ak LK AK Y … … 23
g-estimation: Step 1 Ø Structural ”Nested” Modelsを設定 , !#,%#$" −
, !#%",%# = ( ( + (*# , + ( , ! , "L ͷޮՌͷϞσϧ 1. β (ak の効果は⼀定) 2. β0 + β1 k (ak の効果は時間と共に線形変化) 3. β0 + β1 ak-1 + β2 Lk ā + β3 a0 Lk ā (ak の効果は直前のLk とak-1 のみに依存) ( + (*# , + ( , ! , の例 Bias-variance trade-off!! Ø 各時点の治療のConditional effectを推定 24
g-estimation: Step 2 , !#,%#$" − , !#%",%# = (
( + (*# , + ( , ! , 9 % = , ! − & ("% ) ( ( + (*# , + ( , ! , Ø 9 %に対する1つの⽅程式をつくる Ø 以下は例として( + (*# , + ( , ! , = (a: の効果は⼀定)のとき 9 % = , ! − & ("% ) ( 25
g-estimation: Step 3 Ø ConsistencyでデータとStep2の式をリンク ∗ = − ∗ &
("% ) ( Ø (∗)をつくる ະͷύϥϝʔλ 1. ∗͕ܾ·ΕաڈͷAͷσʔλ͔Β (∗)֤ݸਓʹର ͯ͠ܭࢉՄೳ 2. ∗=ͳΒ(∗) = = 9 % 9 % = , ! − & ("% ) ( = − & ("% ) ( 26
g-estimation: Step 4 Ø Sequential Exchangeabilityを使う Ø Treatment Modelをつくる Ø
Yā ⫫ Ak | L̄ k , A ̅ k-1 すべての時点kにおける治療Ak に対して、 ∗ の係数の推定値 が0となるような∗を⾒つける 1PPMFE-PHJTUJD3FHSFTTJPOͰҰؾʹϞσϧԽ Ø ⫫ Ak | L̄ k , A ̅ k-1 logit ( ( ( , ̅ (*# , ∗ = % ∗ + ( ̅ (*# , ( ( 各時点でのfunctional formが同じと仮定 27
g-estimation: Step 5 Ø [9 %]を推定する Ø [ , !]を推定する
9 % = − & ("% ) ( ( + (*# , + ( , 9 % = − & ("% ) ( Ø 各時点での効果を ) $ に⾜していく Ø 効果が過去の 1 *+% , - に依存するときには、 1 * , -をシミュレート (Technical Point 21.6) , ! = 9 %+ & ("% ) ( ( + (*# , + ( , ! , , ! = 9 % + & ("% ) ( ( + (*# , + ( , ! , = の場合 28
g-estimation まとめ Ø * 1 *+% , 1 * ,
-, にtreatment/covariate historyが含まれる(各時点 の治療効果が過去の変数によって変わる)ときは複数 Ø Pooled logisticを使うためにはconstant functional form 4USVDUVSBM/FTUFE .FBO .PEFMT , !#,%#$" − , !#%",%# = ( ( + (*# , + ( , ! , logit ( ( ( , ̅ (*# , ∗ = % ∗ + ( ̅ (*# , ( ( 5SFBUNFOU)JTUPSZ.PEFM $PWBSJBUF)JTUPSZ.PEFM Ø * 1 *+% , 1 * , -, に過去のLが含まれている時 Ø Pooled logisticを使って 1 * , -をシミュレート 29
Ø (Review 1) g-formula & IPW for time-varying treatments Ø
(Review 2) g-estimation for time-fixed treatments Ø g-estimation for time-varying treatments Ø Censoring is a time-varying treatment Agenda 30
Time-varying Censoring [ , !, ̅ ;"%|+ ] = ̅
= + , + , ̅ = + 0 !,;"% = = [| = , , = 0] Ø Time-fixed Treatment Ø Time-varying Treatment Ø Time-varying treatment & time-varying censoringへのjoint interventionと考えられる Ø Time-varying censoringの対応にもg-methodがつかえる 31