Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Online Matching and Ad Allocation [Chapter 6 Th...
Search
Shinichi Takayanagi
May 24, 2016
Technology
0
240
Online Matching and Ad Allocation [Chapter 6 The Online Primal-Dual View]
“Online Matching and Ad Allocation”勉強会第4回の「Chapter 6
The Online Primal-Dual View」のまとめ資料
Shinichi Takayanagi
May 24, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
論文紹介「Evaluation gaps in machine learning practice」と、効果検証入門に関する昔話
stakaya
0
810
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
1.2k
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
540
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.9k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
630
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.2k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
350
Other Decks in Technology
See All in Technology
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
220
ソフトウェアエンジニアの生成AI活用と、これから
lycorptech_jp
PRO
0
910
現場の壁を乗り越えて、 「計装注入」が拓く オブザーバビリティ / Beyond the Field Barriers: Instrumentation Injection and the Future of Observability
aoto
PRO
1
610
SRE × マネジメントレイヤーが挑戦した組織・会社のオブザーバビリティ改革 ― ビジネス価値と信頼性を両立するリアルな挑戦
coconala_engineer
0
260
From Natural Language to K8s Operations: The MCP Architecture and Practice of kubectl-ai
appleboy
0
230
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
14
82k
webpack依存からの脱却!快適フロントエンド開発をViteで実現する #vuefes
bengo4com
4
3.4k
CREが作る自己解決サイクルSlackワークフローに組み込んだAIによる社内ヘルプデスク改革 #cre_meetup
bengo4com
0
340
AI駆動で進める依存ライブラリ更新 ─ Vue プロジェクトの品質向上と開発スピード改善の実践録
sayn0
1
320
SCONE - 動画配信の帯域を最適化する新プロトコル
kazuho
1
380
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
5
1.2k
[re:Inent2025事前勉強会(有志で開催)] re:Inventで見つけた人生をちょっと変えるコツ
sh_fk2
0
140
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Why Our Code Smells
bkeepers
PRO
340
57k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Scaling GitHub
holman
463
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
Side Projects
sachag
455
43k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
“Online Matching and Ad Allocation”勉強会第4回 Chapter 6 The Online Primal-Dual
View 株式会社リクルートコミュニケーションズ ICTソリューション局アドテクノロジーサービス開発部 高柳慎一
(C)Recruit Communications Co., Ltd. The Online Primal–Dual View • これまでは”組み合わせ”の問題として定式化し、
広告のアロケーション問題を解いてきた • ここではBuchbinder, Naor[22]によって導入さ れたOnline Primal-Dualフレームワークを用いて 解く方法を考える 1
(C)Recruit Communications Co., Ltd. 主・双対問題としての定式化 Buchbinderら[21]では主・双対問題の線形計画(LP)として定式化 2 ITC_PPT_C_white_FONTUP.pptx 主問題 双対問題
(C)Recruit Communications Co., Ltd. • オフラインな状況であれば、最適化アロケー ション についてこれを解けばよい • 実際には全てのV(頂点集合、人)については不明 なので、これはできない
• まずオフラインの解についての条件をチェック 3 主・双対問題としての定式化 x uv ;u ∈U,v ∈ V { }
(C)Recruit Communications Co., Ltd. • 線形計画問題において、主・双対問題がそれぞれの問題の最適解 であるための必要十分条件 • そこから派生し、以下も成立(書籍の式) 相補性条件(Complementary
Slackness Condition) 4
(C)Recruit Communications Co., Ltd. • 解釈 – :予算消化されました – :割当てはScaledなbidが最大
になるよう実施される(双対問題の等号が解なので) – :割当られた比率は規格化されている 5 相補性条件(Complementary Slackness Condition)
(C)Recruit Communications Co., Ltd. オンライン問題における指針 • LP全体は不明(まだ見ぬvがいる)ので… – 相補性条件の(6.1)を使用して、アロケーション決定 –
良い競合比を持つアロケーションを作成できる • これをこれからひたすらに見ていく • 手始め、GREEDYの競合比が1/2になることを 見る(with small-bids assumption) 6
(C)Recruit Communications Co., Ltd. GREEDYの競合比 7 復習(Chapter 5)
(C)Recruit Communications Co., Ltd. GREEDYの競合比(証明) • 以下の一連の(不)等式により明らかになる – Dual*は条件が全部Givenだと思った時の真の解 –
OPTはsmall-bids仮定の連続極限 – (一個目の不等式以外は自明かと) 8
(C)Recruit Communications Co., Ltd. GREEDYの競合比(証明) • 双対変数の更新法について以下のように定義 – こうするとアルゴリズムがGREEDYになる –
αは、初期値0で予算消化の際に1とする – βは最も大きいbidを当てる(テキストの記法が雑) – 割当量は1 9
(C)Recruit Communications Co., Ltd. • 双対問題の第二項めで が加算される • 一方、あるuの予算が消費しつくされた場合、 第一項がBuとなる
• Buは主問題でも既にカウントしてる(二重計算) 10 GREEDYの競合比(証明) 主問題 双対問題
(C)Recruit Communications Co., Ltd. MSVV(復習, 5.2, P311) 11 • 同様に、この枠組(双対変数探し)でMSVVを解
釈・表現したい
(C)Recruit Communications Co., Ltd. 12 もろもろの定義
(C)Recruit Communications Co., Ltd. Primal-Dual Adwords • このアルゴリズムがMSVVと同じ更新式 – 最大化しているものが同じ(下記参照)
13
(C)Recruit Communications Co., Ltd. • このアルゴリズムの競合比は1/ρ – .oO(これはMSVVで証明してるので端折る) • 更新時に
– 主問題: – 双対問題: だけ目的関数が変化するので、最終的に .oO(等号成立しそうな気がするんだが…) 14 Primal-Dual Adwords
(C)Recruit Communications Co., Ltd. 6.2 Adwords with Random Order •
AdversarialではなくRandom到着の場合を検討 • 1-o(1)な競合比の存在について、Devanur and Hayes[35]が以下を提唱 – LPの頂点集合Vは指定された確率分布でサンプリン グしたものを使う – (主問題の変数ではなく)双対変数のみを考える 15
(C)Recruit Communications Co., Ltd. Random Order Adwords • ハット付のアルファベットが、サンプリングした問題・LP解いた 結果の変数に相当
• サンプリングはε個(単位は割合かも?)すると思ってる 16
(C)Recruit Communications Co., Ltd. Random Order Adwords • 競合比は下記(証明なし) •
このやり方は実務で使われ得るもの – Vの分布を過去データから推定してやる • 一般化した手法も[6, 44, 92] 17
(C)Recruit Communications Co., Ltd. 6.3 Bipartite Matching via Randomized Primal-Dual
• RANKING for bipartite matching, PERTURBED GREEDY for vertex-weighted bipartite matching に対しても似たような主双対での解釈ができる か? • 違いは予算消化が0, 1だったかそうじゃないか 18
(C)Recruit Communications Co., Ltd. • Algorithm 11との違いは – 乱数を入れるかそうじゃないか •
〜 〜 19 Primal-Dual Vertex-Weighted Bipartite Matching
(C)Recruit Communications Co., Ltd. Primal-Dual Vertex-Weighted Bipartite Matching 20
(C)Recruit Communications Co., Ltd. • 目的関数がちゃんとPERTURBED GREEDYと 同じになっている • Primal-Dual
ratioの箇所は略 21 Primal-Dual Vertex-Weighted Bipartite Matching
(C)Recruit Communications Co., Ltd. • Feasibility(実行可能性)については議論が必要 – というランダムネスがあるので • これに関して期待値をとって成り立つことを証
明[33] • 残りの議論も期待値ベースで成立が言える • .oO(意味あるのかこれ…) 22 Primal-Dual Vertex-Weighted Bipartite Matching