Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
FaaS における Java 起動時間の比較 (AWS / Azure / GCP) #jju...
Search
Kihara, Takuya
PRO
June 04, 2023
Technology
2
2.1k
FaaS における Java 起動時間の比較 (AWS / Azure / GCP) #jjug_ccc #jjug_ccc_d
JJUG CCC 2023 Spring 登壇資料
2023/06/04 16:40〜17:00
Kihara, Takuya
PRO
June 04, 2023
Tweet
Share
More Decks by Kihara, Takuya
See All by Kihara, Takuya
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
260
Amazon Q Developer CLI でゲームと Amplify アプリを作ってみた #ゆるWeb札幌
tacck
PRO
0
30
ゆるWeb勉強会@札幌 #30 #ゆるWeb札幌
tacck
PRO
0
8
Flutter を始めよう! - Flutter の開発現場から
tacck
PRO
0
150
GitHub Actions で Flutter アプリの CI/CD をやってます #ゆるWeb札幌
tacck
PRO
0
220
ゆるWeb勉強会@札幌 #29 #ゆるWeb札幌
tacck
PRO
0
140
読んで学ぶ Amplify Gen2 / Amplify と CDK の関係を紐解く #jawsug_tokyo
tacck
PRO
1
480
はじめまして GoLang #cm_sapporo_study
tacck
PRO
0
140
ゆるWeb勉強会@札幌 #28 #ゆるWeb札幌
tacck
PRO
0
92
Other Decks in Technology
See All in Technology
まだ間に合う! 2025年のhono/ssg事情
watany
3
620
現場データから見える、開発生産性の変化コード生成AI導入・運用のリアル〜 / Changes in Development Productivity and Operational Challenges Following the Introduction of Code Generation AI
nttcom
1
460
OCIjp_Oracle AI World_Recap
shinpy
1
170
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
14k
ローカルLLMとLINE Botの組み合わせ その2(EVO-X2でgpt-oss-120bを利用) / LINE DC Generative AI Meetup #7
you
PRO
1
150
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
350
知覚とデザイン
rinchoku
1
480
Observability — Extending Into Incident Response
nari_ex
1
100
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
43k
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3k
Biz職でもDifyでできる! 「触らないAIワークフロー」を実現する方法
igarashikana
6
3.1k
Observability for the system understanding and curious by developers
maruloop
1
470
Featured
See All Featured
Bash Introduction
62gerente
615
210k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Rails Girls Zürich Keynote
gr2m
95
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Faster Mobile Websites
deanohume
310
31k
Navigating Team Friction
lara
190
15k
Designing Experiences People Love
moore
142
24k
The Invisible Side of Design
smashingmag
302
51k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Visualization
eitanlees
149
16k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Transcript
FAAS における JAVA 起動時間の比較 AWS / AZURE / GCP JJUG
CCC 2023 Spring 2023/06/04 tacck (Kihara, Takuya) JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 1
JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 2 木原 卓也 Kihara,
Takuya / @tacck 生活協同組合コープさっぽろ デジタル推進本部システム部 Amplify Japan User Group 運営メンバー ゆるWeb勉強会@札幌 主催 AWS Community Builder Since Q2 2021 / Category: Front-end Web and Mobile 好きなフィギュアスケートの技 スプレッド・イーグル
きっかけ - 前職で、 AWS Lambda に Java を採用したプロジェクトがあった。 - 依頼元の技術スタックの関係から、
Java 8 が指定されていた。 - Cold Start の遅さに遭遇。 - FaaS で Java は人類には早かったことを痛感 それから2〜3年。 - AWS Lambda SnapStart の速さに驚愕! JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 3
きっかけ JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 4 Javaユーザーグループ北海道(Java Do)での発表
Cloud上での高速化は、みんな注目しているっぽい。
きっかけ JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 5 タイミングよく流れてくる 寺田さんのFacebook投稿
他のクラウドプロバイダーだと、 どういう高速化方法があるんだろう? →というのをCfPで応募 →今に至る
今回お話しすること - クラウドプロバイダーごとに提供している FaaS (Function as a Service) で、 Java
を実行してみたらどのくらい時間がかかるのか? - 今回は AWS 、 Azure 、 GCP で計測。 - 各プロバイダーごとのFaaSの高速化技術によって、 それぞれどの程度の効果が得られるのか? コードや実行環境の詳細は割愛させていただきます JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 6
FaaS の処理概要 - 各プロバイダーとも基本的な考え方は同じ - 準備 (Cold Start でのみ必要) -
インスタンス(VM/コンテナ)起動 - ランタイム準備 - プログラムコードのロード - ファンクションの初期処理実行 - 実行 (Warm Start はここから) - ファンクションのハンドラ実行 JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 7
Cold Start に与える影響 - 各プロバイダーとも基本的な考え方は同じ - 準備 (Cold Start でのみ必要)
- インスタンス(VM/コンテナ)起動 - ランタイム準備 - プログラムコードのロード - ファンクションの初期処理実行 - 実行 (Warm Start はここから) - ファンクションのハンドラ実行 JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 8 ランタイム問わず共通 ランタイムによる プログラムによる
Java で考えると - 各プロバイダーとも基本的な考え方は同じ - 準備 (Cold Start でのみ必要) -
インスタンス(VM/コンテナ)起動 - ランタイム準備 - プログラムコードのロード - ファンクションの初期処理実行 - 実行 (Warm Start はここから) - ファンクションのハンドラ実行 JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 9 ここで時間がかかる • JVMの起動を伴うため • プログラム(JAR)が大きくなりがち ランタイム問わず共通 ランタイムによる プログラムによる
Cold Start の時間を減らすために - 方針は大きく二つ - 準備を早くするための仕組み (パターンA) - AWS:
SnapStart - GCP: 起動時の CPU ブースト - そもそも Cold Start させない仕組み (パターンB) - AWS: Provisioned Concurrency - Azure: Functions Premium JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 10
確認してみる - 各サービスで、設定なし、設定あり、で測定。 - アプリケーション - Spring Cloud Function リポジトリの
Sample を利用。 - 計測方法 - Cold Start (相当)の確認では、20分ごとにアクセス、10回確認。 - Warm Start (相当)の確認では、1分ごとにアクセス、10数回アクセスし直近10回を確認。 - 実行時間の取得方法 - AWS は CloudWatch Logs の出力結果から実行時間を取得。 - Azure は Insight の出力結果から実行時間を取得。 - GCP は、ログから取得できなかったため、手元のPCから time + curl コマンドで計測。 - 計測結果の平均値で、設定の効果を確認。 プロバイダ間の計測条件が異なるので、プロバイダ間の数字の比較は行いません。 JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 11
パターンA 準備を早くするための仕組み - AWS: SnapStart - GCP: 起動時の CPU ブースト
JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 12
AWS: SnapStart JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 13 起動パターン
設定なし(ms) 設定あり (ms) 短縮率 Cold Start 4227.77 676.91 16.01% Warm Start 2.66 2.71 101.92% Spring Cloud Function v3.2.10 のサンプルを利用 Java 11 ランタイムを利用 その他: 追加料金無しで設定可能。 Arm64で使えないなど一部制限あるので、利用できる構成であれば利用推奨。 「初期化処理実行済み」のコンテナイメージを作成し、それを起動させることで高速化。
GCP: 起動時の CPU ブースト JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d
14 起動パターン 設定なし(ms) 設定あり (ms) 短縮率 Cold Start 15646.40 2646.80 16.92% Warm Start 157.00 151.90 96.75% Spring Cloud Function v4.0.2 のサンプルを利用 Java 17 ランタイムを利用 その他: 費用は追加となる可能性があるが、今回のテストで試した程度では体感できなかった。 (CPUリソースを5個分割り当てて起動時間が1/5になるなら、実質料金が変わらない?) 設定はデフォルトでONになっている。 Cold Start 中のCPU割り当てを、設定以上に自動で割り当てることで高速化。
パターンB そもそも Cold Start させない仕組み - AWS: Provisioned Concurrency -
Azure: Functions Premium JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 15
AWS: Provisioned Concurrency JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 16
起動パターン 設定なし(ms) 設定あり (ms) 短縮率 Cold Start 4227.77 129.48 3.06% Warm Start 2.66 2.68 100.75% Spring Cloud Function v3.2.10 のサンプルを利用 Java 11 ランタイムを利用 その他: 設定中に、月で+$7目安とコンソール上表示される。 設定ありの場合に、ログには準備実行が記録されても、 呼び出し側には待ち時間としては現れなかった。 動き続けるコンテナが切り替わりながら維持されているように見える。 同時実行数を予約(provisioned)して、事前リソースを確保することで高速化を実現。
Azure: Functions Premium JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 17
起動パターン 設定なし(ms) 設定あり (ms) 短縮率 Cold Start 2740.00 34.13 1.25% Warm Start 63.88 38.77 60.69% Spring Cloud Function v4.0.2 のサンプルを利用 Java 17 ランタイムを利用 その他: 常時コンテナが稼働するため、効果は高いが費用も高くなる可能性がある。 常時コンテナを稼働することで、高速化を実現。
全体比較 JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 18 パターン プロバイダー
Java 起動パターン 設定なし(ms) 設定あり (ms) 短縮率 A 準備時間 短縮 AWS SnapStart 11 Cold Start 4227.77 676.91 16.01% Warm Start 2.66 2.71 101.92% GCP 起動時の CPU ブースト 17 Cold Start 15646.40 2646.80 16.92% Warm Start 157.00 151.90 96.75% B Cold Start なくす AWS Provisioned Concurrency 11 Cold Start 4227.77 129.48 3.06% Warm Start 2.66 2.68 100.75% Azure Functions Premium 17 Cold Start 2740.00 34.13 1.25% Warm Start 63.88 38.77 60.69%
まとめ - 各プロバイダーごとに手法がそれぞれあり、 いずれも高い効果が確認できた。 - 特に「Cold Start をなくす」パターンは劇的な改善。 - 今回はシンプルなアクセス方法での計測。
ある程度負荷を与える形で計測した場合に、待ち時間のパーセンタイルが どのようにでてくるかも、今後確認してみた。 JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 19
END JJUG CCC 2023 Spring #jjug_ccc #jjug_ccc_d 20