Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
アプリから集まるイベントデータのリアルタイム処理入門
Search
tandfy
June 19, 2020
Programming
0
1.5k
アプリから集まるイベントデータのリアルタイム処理入門
tandfy
June 19, 2020
Tweet
Share
More Decks by tandfy
See All by tandfy
Amazon SageMakerの最新アップデートの紹介
tandfy
1
890
Amazon Personalizeではじめるレコメンドサービス
tandfy
0
1.1k
DeepRacerで学ぶ機械学習 1.1
tandfy
0
1k
DeepRacerで始める機械学習
tandfy
1
1.7k
DeepRacerでまなぶ強化学習
tandfy
1
1.4k
Amazon SageMakerではじめる物体検出
tandfy
1
1.1k
Other Decks in Programming
See All in Programming
マイコンでもRustのtestがしたい その2/KernelVM Tokyo 18
tnishinaga
2
2.4k
Laravel Boost 超入門
fire_arlo
2
160
LLMOpsのパフォーマンスを支える技術と現場で実践した改善
po3rin
8
1k
AI時代に学習する意味はあるのか?
tomoyakamaji
0
100
AIエージェント開発、DevOps and LLMOps
ymd65536
1
370
AIでLINEスタンプを作ってみた
eycjur
1
220
『リコリス・リコイル』に学ぶ!! 〜キャリア戦略における計画的偶発性理論と変わる勇気の重要性〜
wanko_it
1
620
tool ディレクティブを導入してみた感想
sgash708
1
160
Improving my own Ruby thereafter
sisshiki1969
1
140
未来を拓くAI技術〜エージェント開発とAI駆動開発〜
leveragestech
2
190
MLH State of the League: 2026 Season
theycallmeswift
0
190
オープンセミナー2025@広島LT技術ブログを続けるには
satoshi256kbyte
0
150
Featured
See All Featured
Gamification - CAS2011
davidbonilla
81
5.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6.1k
Done Done
chrislema
185
16k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
790
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Docker and Python
trallard
45
3.5k
Making Projects Easy
brettharned
117
6.4k
Building Applications with DynamoDB
mza
96
6.6k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Transcript
アプリから集まるイベントデータの リアルタイムデータ処理⼊⾨ 2020/06/19 ⼤澤 勇⽃
2 ⾃⼰紹介 ⼤澤 勇⽃ クラスメソッド株式会社 CX事業本部 ⻄⽇本チーム サーバサイドエンジニア
3 これまでと今 ~2020年3⽉ 機械学習システム開発
4 これまでと今 ~2020年3⽉ 機械学習システム開発 機械学習やデータだけでは× アプリケーションが重要
5 これまでと今 ~2020年3⽉ 機械学習システム開発 2020年4⽉~ アプリケーション開発 機械学習やデータだけでは× アプリケーションが重要
6 アプリ × データ
7 アプリケーション × データ リアルタイムデータ処理って便利そう︕︕
8 アプリケーション × データ リアルタイムデータ処理って便利そう︕︕ けれども、かなり⾯倒な印象がある…
9 調べてみよう︕
10 調べてみよう︕ と⾔うのが今回の動機
11 今回の流れ • どう便利そうなのか • ⽤語と概念 • AWSでのリアルタイムデータ処理 • 活⽤例
• まとめ
12 リアルタイムデータ処理は どう便利そうなのか
13 レコメンドで考えてみる
14 レコメンドの構成例 ΞϓϦέʔγϣϯ "1* αʔόʔ Ϩίϝϯυ Πϕϯτ Πϕϯτ Ϩίϝϯυ ,JOFTJT
%BUB 4USFBNT -BNCEB ,JOFTJT %BUB 'JSFIPTF 4 ੜσʔλ 1FSTPOBMJ[F Πϕϯτ Πϕϯτ Πϕϯτ $MPVE8BUDI &WFOU -BNCEB ఆظ࣮ߦ ιϦϡʔ γϣϯ࡞
15 特徴 • イベントを収集し、イベントを元にしたレコメンド が可能 • ユーザによる操作イベントがレコメンドに反映され るのはほぼリアルタイム • レコメンドエンジンを定期的に更新
• 全イベントデータを使ったモデルの再学習
16 多くのケースにおいて、リアルタイム 性を求められることはない
17 けれども、リアルタイムデータ処理によって… • 分析・アプリケーション改善の速度アップ • アプリケーションでの表現に利⽤するデータ 処理・更新の速度アップ • 新しい機能や表現が可能に
18 ユーザー体験の向上につながる そして、 アプリ利⽤者数の増加へ
19 ⾯倒かもしれないけど 試してみる価値はありそう…!
20 まずは不安を解消するために リアルタイムデータ処理を より具体化しよう!
21 ⽤語と概念
22 リアルタイムデータ処理とは リアルタイムにデータを処理すること
23 リアルタイムデータ処理とは リアルタイムにデータを処理すること ストリーム処理
24 データ処理の種類 • バッチ処理 • 塊として保存されてるデータへの処理 • 有限のデータに対する処理 • ストリーム処理
• 終わりなく流れてくるデータへの処理 • 無限のデータに対する処理
25 バッチ処理のイメージ σʔλ σʔλ ॲཧޙ ॲཧ
26 ストリーム処理のイメージ σʔλ σʔλ ॲཧޙ ॲཧ バッチ処理と異なり、流れてくるデータに終わりがない ->まとめて処理する場合には範囲を定める必要がある
27 ストリーム処理の要素(ストリームベース) イベントを⽣成する プロデューサーから データを取得し、 保持する ストリームから データを取得し 処理する ϓϩσϡʔαʔ
ετϦʔϜ ϒϩʔΧʔ ίϯγϡʔϚʔ
28 ストリーム処理の要素(オペレーターベース) データを流す ソースからデータを 取得し、処理する 処理したデータが 流され、蓄積される ιʔε ετϦʔϜ ΦϖϨʔλʔ
γϯΫ
29 代表的なソース • Apache Kafka • Amazon Kinesis Data Streams
• Amazon Kinesis Data Firehose • Google Cloud PubSub
30 代表的なシンク • Apache Kafka • Elasticsearch • Amazon Kinesis
Data Streams • Amazon Kinesis Data Firehose • Amazon S3 • Google Cloud PubSub
31 代表的なオペレータ • Map • 各レコード毎に処理する • Filter • 各レコード毎に内容に応じた絞り込みをする
• Window • レコードの時間に応じて、ストリーム内のレ コードをグループ化する • 集計を⾏う他のオペレータと併⽤する
32 オペレータの種類 • ステートレス • レコード毎に処理する • 例: Map, Filter
• ステートフル • レコードの内容をもとに複数のレコードをグ ループ化して、処理する • 例: Window
33 ステートレス γϯΫ ΦϖϨʔλʔ ιʔε
34 ステートフル ιʔε γϯΫ ΦϖϨʔλʔ
35 ストリーム処理における3種類の時間 • イベント時間(Event Time) • イベントが実際に発⽣した時間 • 注⼊時間(Ingestion Time)
• ソースに読み込まれた(注⼊された)時間 • 処理時間(Processing Time) • オペレータで処理された時間
36 3種類の時間のイメージ ϓϩσϡʔαʔ ετϦʔϜ Πϕϯτ࣌ؒ ΦϖϨʔλʔ ೖ࣌ؒ Πϕϯτ Πϕϯτ ॲཧ࣌ؒ
37 気になった⽤語 • 透かし、ウォーターマーク(Watermark) • ウィンドウ処理時の最⼤遅延時間 • 遅延: 注⼊時間 -
イベント時間 • 注⼊時間の遅れをどれだけ考慮するか • チェックポイント • どこまで処理したかの記録
38 レコードの処理回数の保証 • Exactly once • 各レコードは必ず⼀回だけ処理される • At least
once • 各レコードは少なくとも⼀回は処理される • At most once • 各レコードは最⼤⼀回は処理される
39 レコードの処理回数の保証 • Exactly once • 各レコードは必ず⼀回だけ処理される • At least
once • 各レコードは少なくとも⼀回は処理される • At most once • 各レコードは最⼤⼀回は処理される プラットフォームや処理によって違うため 要件に応じて確認が必要
40 どんな感じで実現できるのか ⾒てみよう!
41 AWS での リアルタイムデータ処理
42 Kinesis Data Streams ϓϩσϡʔαʔ ίϯγϡʔϚʔ ετϦʔϜ ,JOFTJT %BUB4USFBNT
43 Kinesis Data Firehose ετϦʔϜ ίϯγϡʔϚʔ ετϦʔϜ ΦϖϨʔλʔ ετϦʔϜ ίϯγϡʔϚʔ
ετϦʔϜ ΦϖϨʔλʔ ϓϩσϡʔαʔ γϯΫ 43FETIJGU &MBTUJDTFBSDI4FSWJDF 4QMVOL ,JOFTJT %BUB'JSFIPTF ϓϩσϡʔαʔ γϯΫ 43FETIJGU &MBTUJDTFBSDI4FSWJDF 4QMVOL ,JOFTJT %BUB'JSFIPTF -BNCEB
44 Kinesis Data Analytics ΦϖϨʔλʔ ιʔε ετϦʔϜ ,JOFTJT γϯΫ ,JOFTJT
%BUB"OBMZUJDT
45 Glue (Spark Streaming ジョブタイプ) ΦϖϨʔλʔ ιʔε ετϦʔϜ ,JOFTJT,BGLB γϯΫ
(MVF 4QBSL4USFBNJOH
46 活⽤例
47 レコメンド(再掲) ΞϓϦέʔγϣϯ "1* αʔόʔ Ϩίϝϯυ Πϕϯτ Πϕϯτ Ϩίϝϯυ ,JOFTJT
%BUB 4USFBNT -BNCEB ,JOFTJT %BUB 'JSFIPTF 4 ੜσʔλ 1FSTPOBMJ[F Πϕϯτ Πϕϯτ Πϕϯτ $MPVE8BUDI &WFOU -BNCEB ఆظ࣮ߦ ιϦϡʔ γϣϯ࡞
48 可視化アプリ ΞϓϦέʔγϣϯ "1* αʔόʔ Πϕϯτ ΞϓϦ ूܭσʔλ Πϕϯτ Πϕϯτ
%# αʔόʔ ΞϓϦ ूܭσʔλ ,JOFTJT %BUB4USFBNT -BNCEB
49 分析 ΞϓϦέʔγϣϯ Πϕϯτ Πϕϯτ ,JOFTJT %BUB 'JSFIPTF #* ूܭ
σʔλ 3FETIJGU
50 分析 データ処理版 ΞϓϦέʔγϣϯ Πϕϯτ Πϕϯτ ,JOFTJT %BUB 'JSFIPTF Ճूܭ
σʔλ ,JOFTJT %BUB "OBMZUJDT ,JOFTJT %BUB 'JSFIPTF Ճूܭ σʔλ 3FETIJGU 4 ੜσʔλ #* ूܭ σʔλ
51 リアルタイムデータ処理 理解深まったでしょうか…?
52 まとめ リアルタイムデータ処理を活⽤して、ユーザー体験の向 上、そして、アプリ利⽤者を増加へ… • リアルタイムデータ処理 -> ストリーム処理 • ストリーム処理には独特な⽤語や概念が多い
• サービスを活⽤してストリーム処理を少しでも楽に • ->Kinesisファミリー+α
None