Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RustとCADDi AI LabとML
Search
vaaaaanquish
June 10, 2022
Technology
1
1k
RustとCADDi AI LabとML
Rust、何もわからない... #2
https://estie.connpass.com/event/246429/
登壇資料です
vaaaaanquish
June 10, 2022
Tweet
Share
More Decks by vaaaaanquish
See All by vaaaaanquish
LLMが機械学習分野と他分野に起こしたキャズムから見極めるエンジニアの未来像
vaaaaanquish
0
81
エムスリー流!難読クイズを作ってPythonの深淵に触れるコツ! - 技育CAMPアカデミア
vaaaaanquish
1
280
pandasはPolarsに性能面で追いつき追い越せるのか
vaaaaanquish
6
6k
Pythonのパッケージ管理の中級者の壁を超える stapy#98
vaaaaanquish
19
21k
Tech LT #4 人を選ぶ技術
vaaaaanquish
3
4.4k
CADDi AI LabにおけるマネージドなMLOps
vaaaaanquish
2
3.5k
機械学習OSSの変遷と未来
vaaaaanquish
2
4.2k
文字列(ダジャレを言いシャレ)
vaaaaanquish
1
16k
xonshとかいうshellの話
vaaaaanquish
1
1.9k
Other Decks in Technology
See All in Technology
大事なのは、AIの精度だけじゃない!〜1円のズレも許されない経理領域とAI〜
jun_nemoto
10
5.1k
会社員しながら本を書いてきた知見の共有
sat
PRO
3
690
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
17k
Cloud Run を解剖して コンテナ監視を考える / Breaking Down Cloud Run to Rethink Container Monitoring
aoto
PRO
0
110
Rebase エンジニアリング組織の現状とこれから
rebase_engineering
0
140
OTel meets Wasm: プラグイン機構としてのWebAssemblyから見る次世代のObservability
lycorptech_jp
PRO
1
300
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
12k
アプリケーションの中身が見える!Mackerel APMの全貌と展望 / Mackerel APMリリースパーティ
mackerelio
0
440
Introduction to Bill One Development Engineer
sansan33
PRO
0
240
mnt_data_とは?ChatGPTコード実行環境を深堀りしてみた
icck
0
210
KMP導⼊において、マネジャーとして考えた事
sansantech
PRO
1
210
TechBull Membersの開発進捗どうですか!?
rvirus0817
0
120
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
1
78
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.3k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Designing Experiences People Love
moore
142
24k
Building an army of robots
kneath
306
45k
Embracing the Ebb and Flow
colly
85
4.7k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The Power of CSS Pseudo Elements
geoffreycrofte
76
5.8k
Faster Mobile Websites
deanohume
307
31k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Bash Introduction
62gerente
614
210k
Transcript
RustとCADDi AI LabとML Rust、何もわからない... #2 2022/05/19 CADDi AI Lab Tech
Lead Shunsuke Kawai
I AM • CADDi, inc. AI Lab Tech Lead M3,
inc. Engineering Fellow Developers Guild Bolder’s Owner • OSS • XGBoost、LightGBM、Rust wrapper • gokart • xonsh Shunsuke Kawai (@vaaaaanquish)
AGENDA 1. CADDi AI LabでのRust 2. RustとCV/ML 3. まとめ
CADDi AI Lab × Rust
CADDi, inc. • Webアプリケーション開発 async-graphql, axum, diesel, tonic ...etc •
アルゴリズム開発 tract-onnx, rayon, tokio, wasm-bindgen ...etc • speakerdeckをチェック! https://caddi.connpass.com/event/239652/ https://caddi.connpass.com/event/243143/
WHY CADDi AI Lab × Rust • 図面における画像処理 • 2Dでも非常に大きい
A1,2サイズも、8000*6000pxとか • 非常にスパース • 速度、並列化、計算量意識がMust • 情報が潰れないよう捜査、ベクタライズ • 3Dデータについては言わずもがな
MEMBERS PdM/EM ex-PFN, NTT, Venture CTO DataEng ex-Yahoo! DataAnalyst AlgorithmEng
2D/3D Image Processing AtCoder Ranker MLEng ex-DeNA, M3, Mackinsey Kaggle Master Grand Master
from: Tech Talk slide for external audiences https://speakerdeck.com/caddi_eng/deiputoarugogatatuguwozu-mu-kiyadeitu-mian-jie-xi-falsetekufalserozinipo-ru-caddi Deep Learning
CASE: Image Processing to DNN • 図面を捜査し”矢印”候補を検出する • precisionが高くなるよう調整 • DeepLearningモデルでの0/1判定へ • Rustでの実現 • Pythonで学習したモデルをONNX形式へ • tract-ONNXでの推論 • rayonで全体を並列化
CASE • 他にもCASE色々 • nalgebra等を用いた画像処理アルゴリズム • Next.js, wasm-bindgenを利用したアノテーションツール、Viwer • CLIツール
• tokio APIサーバ 「はじめてのディープラーニング」をモブプロでRustで再実装してみたり 言語としてMLE/DEも学ぶ環境を用意している
RustとML
AWESOME RUST MACHINE LEARNING • Rustにおける機械学習モデルや画像処理、 自然言語処理に関する実装、論文、ブログ をまとめたrepogitory • 470starくらい
• 応用事例は大体書いてあると思う https://github.com/vaaaaanquish/Awesome-Rust-MachineLearning
VOGUE • CV、NLP、検索エンジンが盛り上がっている • CV/MLは大きくDeep Learningの流行が続く • tch-rs, tensorflow/rust •
推論系のフレームワーク開発が継続/活発 • tract, orkhon, wonnx, onnxruntime-rs • こと”学習”においてはDeep Learning周辺の多くがPythonないし Pythonをターゲットにしたツール(DNNフレームワーク, GPU回り, ...) • C/C++、OpenCL、OpenGLがあり学習面では恩恵を受けづらい • 推論の高速化、省メモリ化、wasmによるプラットフォームの拡大
HOW • 独自のモデルファイル形式を通す • tch-rs • tensorflow/rust • ONNXを介す •
ONNX: Microsoft、Facebookが提案した DeepLearningモデル用の ファイルフォーマット及び周辺ツール • CADDiでも利用 (tract-ONNX) https://vaaaaaanquish.hatenablog.com/entry/2021/09/07/141531 https://github.com/dskkato/rust-machine-learning-api-example
ONNX in Rust • tract ◦ CPUに特化したONNXでの推論フレームワーク群 ◦ 独自のNNEF拡張な中間表現であるtract-oplを定義 ▪
trainingに関連する機能の削除 (decluttering) ▪ scan operatorによるユニットの繰り返し処理の削減 • orkhon ◦ ONNX or PythonランタイムをPyO3経由で叩く形式をサポートした推論フレームワーク ◦ tract, rayonにより高速な推論を実現 • onnxruntime-rs ◦ microsoft/onnxruntimeのrust wrapper ◦ Multi platform、WebGLによるGPU上での推論 • wonnx ◦ GPUをターゲットにしたPure RustなONNX推論ランタイム ◦ Vulkan/Metal/DX12を利用して各PlatformのGPU上で推論 https://github.com/sonos/tract https://www.reddit.com/r/rust/comments/s0vi54/ wonnx_deep_learning_on_webgpu_using_the_onnx/
tract / wonnx tract wonnx
まとめ
SUMMARY • CADDi AI Labが今面白い • Rust x MLの活用事例の多くが推論に寄っている •
ONNX関連のツールを紹介 .o0(rust wasmでwebGL CAD作る実験を個人的にしてるので、そこに載ると面白いだろうなあ…誰か手伝ってくれないかなあ…)
~ 未来を作ろう ~ Twitterを今すぐフォロー!