Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RustとCADDi AI LabとML
Search
vaaaaanquish
June 10, 2022
Technology
1
1.1k
RustとCADDi AI LabとML
Rust、何もわからない... #2
https://estie.connpass.com/event/246429/
登壇資料です
vaaaaanquish
June 10, 2022
Tweet
Share
More Decks by vaaaaanquish
See All by vaaaaanquish
LLMが機械学習分野と他分野に起こしたキャズムから見極めるエンジニアの未来像
vaaaaanquish
0
120
エムスリー流!難読クイズを作ってPythonの深淵に触れるコツ! - 技育CAMPアカデミア
vaaaaanquish
1
310
pandasはPolarsに性能面で追いつき追い越せるのか
vaaaaanquish
6
6.1k
Pythonのパッケージ管理の中級者の壁を超える stapy#98
vaaaaanquish
19
21k
Tech LT #4 人を選ぶ技術
vaaaaanquish
3
4.5k
CADDi AI LabにおけるマネージドなMLOps
vaaaaanquish
2
3.5k
機械学習OSSの変遷と未来
vaaaaanquish
2
4.3k
文字列(ダジャレを言いシャレ)
vaaaaanquish
1
16k
xonshとかいうshellの話
vaaaaanquish
1
1.9k
Other Decks in Technology
See All in Technology
Deep Security Conference 2025:生成AI時代のセキュリティ監視 /dsc2025-genai-secmon
mizutani
5
3.8k
AIでテストプロセス自動化に挑戦する
sakatakazunori
1
640
Microsoft Defender XDRで疲弊しないためのインシデント対応
sophiakunii
3
390
"Découvrir le Liberland"
rlifchitz
0
130
Digitization部 紹介資料
sansan33
PRO
1
4.6k
無理しない AI 活用サービス / #jazug
koudaiii
0
120
データ駆動経営の道しるべ:プロダクト開発指標の戦略的活用法
ham0215
2
220
スプリントゴール未達症候群に送る処方箋
kakehashi
PRO
1
170
機械学習を「社会実装」するということ 2025年夏版 / Social Implementation of Machine Learning July 2025 Version
moepy_stats
1
310
複数のGemini CLIが同時開発する狂気 - Jujutsuが実現するAIエージェント協調の新世界
gunta
7
2.3k
スプリントレビューを効果的にするために
miholovesq
8
1.4k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
830
Featured
See All Featured
Code Review Best Practice
trishagee
69
19k
Scaling GitHub
holman
461
140k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
760
Producing Creativity
orderedlist
PRO
346
40k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
The Invisible Side of Design
smashingmag
301
51k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
990
How to Ace a Technical Interview
jacobian
278
23k
GraphQLとの向き合い方2022年版
quramy
49
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
RustとCADDi AI LabとML Rust、何もわからない... #2 2022/05/19 CADDi AI Lab Tech
Lead Shunsuke Kawai
I AM • CADDi, inc. AI Lab Tech Lead M3,
inc. Engineering Fellow Developers Guild Bolder’s Owner • OSS • XGBoost、LightGBM、Rust wrapper • gokart • xonsh Shunsuke Kawai (@vaaaaanquish)
AGENDA 1. CADDi AI LabでのRust 2. RustとCV/ML 3. まとめ
CADDi AI Lab × Rust
CADDi, inc. • Webアプリケーション開発 async-graphql, axum, diesel, tonic ...etc •
アルゴリズム開発 tract-onnx, rayon, tokio, wasm-bindgen ...etc • speakerdeckをチェック! https://caddi.connpass.com/event/239652/ https://caddi.connpass.com/event/243143/
WHY CADDi AI Lab × Rust • 図面における画像処理 • 2Dでも非常に大きい
A1,2サイズも、8000*6000pxとか • 非常にスパース • 速度、並列化、計算量意識がMust • 情報が潰れないよう捜査、ベクタライズ • 3Dデータについては言わずもがな
MEMBERS PdM/EM ex-PFN, NTT, Venture CTO DataEng ex-Yahoo! DataAnalyst AlgorithmEng
2D/3D Image Processing AtCoder Ranker MLEng ex-DeNA, M3, Mackinsey Kaggle Master Grand Master
from: Tech Talk slide for external audiences https://speakerdeck.com/caddi_eng/deiputoarugogatatuguwozu-mu-kiyadeitu-mian-jie-xi-falsetekufalserozinipo-ru-caddi Deep Learning
CASE: Image Processing to DNN • 図面を捜査し”矢印”候補を検出する • precisionが高くなるよう調整 • DeepLearningモデルでの0/1判定へ • Rustでの実現 • Pythonで学習したモデルをONNX形式へ • tract-ONNXでの推論 • rayonで全体を並列化
CASE • 他にもCASE色々 • nalgebra等を用いた画像処理アルゴリズム • Next.js, wasm-bindgenを利用したアノテーションツール、Viwer • CLIツール
• tokio APIサーバ 「はじめてのディープラーニング」をモブプロでRustで再実装してみたり 言語としてMLE/DEも学ぶ環境を用意している
RustとML
AWESOME RUST MACHINE LEARNING • Rustにおける機械学習モデルや画像処理、 自然言語処理に関する実装、論文、ブログ をまとめたrepogitory • 470starくらい
• 応用事例は大体書いてあると思う https://github.com/vaaaaanquish/Awesome-Rust-MachineLearning
VOGUE • CV、NLP、検索エンジンが盛り上がっている • CV/MLは大きくDeep Learningの流行が続く • tch-rs, tensorflow/rust •
推論系のフレームワーク開発が継続/活発 • tract, orkhon, wonnx, onnxruntime-rs • こと”学習”においてはDeep Learning周辺の多くがPythonないし Pythonをターゲットにしたツール(DNNフレームワーク, GPU回り, ...) • C/C++、OpenCL、OpenGLがあり学習面では恩恵を受けづらい • 推論の高速化、省メモリ化、wasmによるプラットフォームの拡大
HOW • 独自のモデルファイル形式を通す • tch-rs • tensorflow/rust • ONNXを介す •
ONNX: Microsoft、Facebookが提案した DeepLearningモデル用の ファイルフォーマット及び周辺ツール • CADDiでも利用 (tract-ONNX) https://vaaaaaanquish.hatenablog.com/entry/2021/09/07/141531 https://github.com/dskkato/rust-machine-learning-api-example
ONNX in Rust • tract ◦ CPUに特化したONNXでの推論フレームワーク群 ◦ 独自のNNEF拡張な中間表現であるtract-oplを定義 ▪
trainingに関連する機能の削除 (decluttering) ▪ scan operatorによるユニットの繰り返し処理の削減 • orkhon ◦ ONNX or PythonランタイムをPyO3経由で叩く形式をサポートした推論フレームワーク ◦ tract, rayonにより高速な推論を実現 • onnxruntime-rs ◦ microsoft/onnxruntimeのrust wrapper ◦ Multi platform、WebGLによるGPU上での推論 • wonnx ◦ GPUをターゲットにしたPure RustなONNX推論ランタイム ◦ Vulkan/Metal/DX12を利用して各PlatformのGPU上で推論 https://github.com/sonos/tract https://www.reddit.com/r/rust/comments/s0vi54/ wonnx_deep_learning_on_webgpu_using_the_onnx/
tract / wonnx tract wonnx
まとめ
SUMMARY • CADDi AI Labが今面白い • Rust x MLの活用事例の多くが推論に寄っている •
ONNX関連のツールを紹介 .o0(rust wasmでwebGL CAD作る実験を個人的にしてるので、そこに載ると面白いだろうなあ…誰か手伝ってくれないかなあ…)
~ 未来を作ろう ~ Twitterを今すぐフォロー!