Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RustとCADDi AI LabとML
Search
vaaaaanquish
June 10, 2022
Technology
1
1.1k
RustとCADDi AI LabとML
Rust、何もわからない... #2
https://estie.connpass.com/event/246429/
登壇資料です
vaaaaanquish
June 10, 2022
Tweet
Share
More Decks by vaaaaanquish
See All by vaaaaanquish
生成AIによるソフトウェア開発の収束地点 - Hack Fes 2025
vaaaaanquish
36
20k
LLMが機械学習分野と他分野に起こしたキャズムから見極めるエンジニアの未来像
vaaaaanquish
1
300
エムスリー流!難読クイズを作ってPythonの深淵に触れるコツ! - 技育CAMPアカデミア
vaaaaanquish
1
410
pandasはPolarsに性能面で追いつき追い越せるのか
vaaaaanquish
6
6.5k
Pythonのパッケージ管理の中級者の壁を超える stapy#98
vaaaaanquish
19
22k
Tech LT #4 人を選ぶ技術
vaaaaanquish
3
4.7k
CADDi AI LabにおけるマネージドなMLOps
vaaaaanquish
2
3.6k
機械学習OSSの変遷と未来
vaaaaanquish
2
4.7k
文字列(ダジャレを言いシャレ)
vaaaaanquish
1
17k
Other Decks in Technology
See All in Technology
Modern Data Stack大好きマンが語るSnowflakeの魅力
sagara
0
280
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
290
プロダクトマネージャーが押さえておくべき、ソフトウェア資産とAIエージェント投資効果 / pmconf2025
i35_267
2
340
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
110
Product Engineer
resilire
0
130
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
37k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
640
小さな判断で育つ、大きな意思決定力 / 20251204 Takahiro Kinjo
shift_evolve
PRO
1
300
M5UnifiedとPicoRubyで楽しむM5シリーズ
kishima
0
110
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
240
履歴テーブル、今回はこう作りました 〜 Delegated Types編 〜 / How We Built Our History Table This Time — With Delegated Types
moznion
15
9.4k
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
190
Featured
See All Featured
A better future with KSS
kneath
240
18k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Facilitating Awesome Meetings
lara
57
6.7k
We Have a Design System, Now What?
morganepeng
54
7.9k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Typedesign – Prime Four
hannesfritz
42
2.9k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Documentation Writing (for coders)
carmenintech
76
5.2k
Bash Introduction
62gerente
615
210k
Building an army of robots
kneath
306
46k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
Transcript
RustとCADDi AI LabとML Rust、何もわからない... #2 2022/05/19 CADDi AI Lab Tech
Lead Shunsuke Kawai
I AM • CADDi, inc. AI Lab Tech Lead M3,
inc. Engineering Fellow Developers Guild Bolder’s Owner • OSS • XGBoost、LightGBM、Rust wrapper • gokart • xonsh Shunsuke Kawai (@vaaaaanquish)
AGENDA 1. CADDi AI LabでのRust 2. RustとCV/ML 3. まとめ
CADDi AI Lab × Rust
CADDi, inc. • Webアプリケーション開発 async-graphql, axum, diesel, tonic ...etc •
アルゴリズム開発 tract-onnx, rayon, tokio, wasm-bindgen ...etc • speakerdeckをチェック! https://caddi.connpass.com/event/239652/ https://caddi.connpass.com/event/243143/
WHY CADDi AI Lab × Rust • 図面における画像処理 • 2Dでも非常に大きい
A1,2サイズも、8000*6000pxとか • 非常にスパース • 速度、並列化、計算量意識がMust • 情報が潰れないよう捜査、ベクタライズ • 3Dデータについては言わずもがな
MEMBERS PdM/EM ex-PFN, NTT, Venture CTO DataEng ex-Yahoo! DataAnalyst AlgorithmEng
2D/3D Image Processing AtCoder Ranker MLEng ex-DeNA, M3, Mackinsey Kaggle Master Grand Master
from: Tech Talk slide for external audiences https://speakerdeck.com/caddi_eng/deiputoarugogatatuguwozu-mu-kiyadeitu-mian-jie-xi-falsetekufalserozinipo-ru-caddi Deep Learning
CASE: Image Processing to DNN • 図面を捜査し”矢印”候補を検出する • precisionが高くなるよう調整 • DeepLearningモデルでの0/1判定へ • Rustでの実現 • Pythonで学習したモデルをONNX形式へ • tract-ONNXでの推論 • rayonで全体を並列化
CASE • 他にもCASE色々 • nalgebra等を用いた画像処理アルゴリズム • Next.js, wasm-bindgenを利用したアノテーションツール、Viwer • CLIツール
• tokio APIサーバ 「はじめてのディープラーニング」をモブプロでRustで再実装してみたり 言語としてMLE/DEも学ぶ環境を用意している
RustとML
AWESOME RUST MACHINE LEARNING • Rustにおける機械学習モデルや画像処理、 自然言語処理に関する実装、論文、ブログ をまとめたrepogitory • 470starくらい
• 応用事例は大体書いてあると思う https://github.com/vaaaaanquish/Awesome-Rust-MachineLearning
VOGUE • CV、NLP、検索エンジンが盛り上がっている • CV/MLは大きくDeep Learningの流行が続く • tch-rs, tensorflow/rust •
推論系のフレームワーク開発が継続/活発 • tract, orkhon, wonnx, onnxruntime-rs • こと”学習”においてはDeep Learning周辺の多くがPythonないし Pythonをターゲットにしたツール(DNNフレームワーク, GPU回り, ...) • C/C++、OpenCL、OpenGLがあり学習面では恩恵を受けづらい • 推論の高速化、省メモリ化、wasmによるプラットフォームの拡大
HOW • 独自のモデルファイル形式を通す • tch-rs • tensorflow/rust • ONNXを介す •
ONNX: Microsoft、Facebookが提案した DeepLearningモデル用の ファイルフォーマット及び周辺ツール • CADDiでも利用 (tract-ONNX) https://vaaaaaanquish.hatenablog.com/entry/2021/09/07/141531 https://github.com/dskkato/rust-machine-learning-api-example
ONNX in Rust • tract ◦ CPUに特化したONNXでの推論フレームワーク群 ◦ 独自のNNEF拡張な中間表現であるtract-oplを定義 ▪
trainingに関連する機能の削除 (decluttering) ▪ scan operatorによるユニットの繰り返し処理の削減 • orkhon ◦ ONNX or PythonランタイムをPyO3経由で叩く形式をサポートした推論フレームワーク ◦ tract, rayonにより高速な推論を実現 • onnxruntime-rs ◦ microsoft/onnxruntimeのrust wrapper ◦ Multi platform、WebGLによるGPU上での推論 • wonnx ◦ GPUをターゲットにしたPure RustなONNX推論ランタイム ◦ Vulkan/Metal/DX12を利用して各PlatformのGPU上で推論 https://github.com/sonos/tract https://www.reddit.com/r/rust/comments/s0vi54/ wonnx_deep_learning_on_webgpu_using_the_onnx/
tract / wonnx tract wonnx
まとめ
SUMMARY • CADDi AI Labが今面白い • Rust x MLの活用事例の多くが推論に寄っている •
ONNX関連のツールを紹介 .o0(rust wasmでwebGL CAD作る実験を個人的にしてるので、そこに載ると面白いだろうなあ…誰か手伝ってくれないかなあ…)
~ 未来を作ろう ~ Twitterを今すぐフォロー!