Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
これまでの研究経過と希望する研究 / Research Plan for Doctoral C...
Search
Yuuki Tsubouchi (yuuk1)
February 06, 2020
Research
1
390
これまでの研究経過と希望する研究 / Research Plan for Doctoral Course
令和2年度4月期入学 京都大学大学院 情報学研究科
博士後期課程 第2次学力検査 口頭試問
Yuuki Tsubouchi (yuuk1)
February 06, 2020
Tweet
Share
More Decks by Yuuki Tsubouchi (yuuk1)
See All by Yuuki Tsubouchi (yuuk1)
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
520
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
330
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.8k
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
940
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
5.3k
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
1.6k
クラウドのテレメトリーシステム研究動向2025年
yuukit
4
1.2k
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
480
Other Decks in Research
See All in Research
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
460
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.2k
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
170
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
19k
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
840
説明可能な機械学習と数理最適化
kelicht
2
840
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
390
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
データサイエンティストの業務変化
datascientistsociety
PRO
0
170
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.5k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
270
Mobile First: as difficult as doing things right
swwweet
225
10k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Unsuck your backbone
ammeep
671
58k
Navigating Team Friction
lara
191
16k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
92
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
150
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
260
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
340
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1.1k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Transcript
͜Ε·Ͱͷݚڀܦաͱر͢Δݚڀ ௶ ༎थ 20202݄6 ྩ24݄ظೖֶ ژେֶେֶӃ ใֶݚڀՊ ത࢜ޙظ՝ఔ ୈֶ̎࣍ྗݕࠪ ޱ಄ࢼ
2 1. ֶ࢜՝ఔɾम࢜՝ఔͰͷݚڀ 2. ر͢Δݚڀͷഎܠͱత 3. ر͢Δݚڀͷ՝ͱํ๏ 4. ظ͞ΕΔݚڀՌ ࣍
1. ֶ࢜՝ఔɾम࢜՝ఔͰͷݚڀ
4 ֶ࢜՝ఔ: SHA-1ܭࢉγεςϜͷߴεϧʔϓοτԽ ɾഎܠ: ετϨʔδ্ͷσʔλอଘྔ͕૿େ͍ͯ͠Δ ɾ: σʔλͷॏෳՕॴΛഉআ͢Δ͜ͱʹΑΓɼσʔλอଘྔΛ ݮՄೳ͕ͩɼॏෳ෦ͷൃݟॲཧ͕ϘτϧωοΫͱͳΔ ɾఏҊ: ෳͷҟͳΔνϟϯΫʹର͢ΔॏෳൃݟॲཧΛSIMDԋࢉثʹ
ΑΓฒྻॲཧ͠ɼߴԽ͢Δ ɾ࣮ݧ: ઌߦख๏ͱൺֱͯ͠ɼ2.0ഒͷεϧʔϓοτ্Λୡͨ͠ ௶༎थ, ҏจ, ஔాਅੜ, ࢁ૱, ദַ, ഡݪ݉Ұ, ॏෳഉআετϨʔδͷͨΊͷ SHA-1ܭࢉγεςϜͷSSE໋ྩʹ ΑΔߴεϧʔϓοτԽ, ిࢠใ௨৴ֶձจࢽ D, 96(10), 2101-2109 2013.
5 म࢜՝ఔ: TCP/IPνΣοΫαϜͷGPUʹΑΔੑೳ্ ɾഎܠ: ίϯϐϡʔλωοτϫʔΫ͕ଳҬԽ͍ͯ͠Δ ɾ: OS෦ͷ௨৴ॲཧͷͨΊͷCPUෛՙ͕ߴ·ͬͯ ͍Δ ɾఏҊ: ௨৴ॲཧͷ͏ͪ௨৴σʔλʹର͢ΔνΣοΫαϜܭࢉΛGPU
ʹҕৡ͢Δ͜ͱʹΑΓɼCPUෛՙΛݮͤ͞Δ ɾ࣮ݧ: CPUʹΑΔνΣοΫαϜΛߦ͏ͱൺֱ͠ɼσʔλసૹε ϧʔϓοτ͕࠷େͰ13%্ ௶༎थ, ୩߶, ୩ޱٛ໌, தതོ, দԬໜొ, TCP/IPελοΫʹ͓͚ΔνΣοΫαϜܭࢉͷ GPU Φϑ ϩʔυʹΑΔ ੑೳ্ख๏, ిࢠใ௨৴ֶձٕज़ݚڀใࠂ, NS, ωοτϫʔΫγεςϜ, 113(244), pp.67-72 2013 10݄.
ཧతʹࢄͨ͠ΞϓϦέʔγϣϯͷ ߴ৴པԽͷͨΊͷΞʔΩςΫνϟʹؔ͢Δݚڀ ത࢜՝ఔͰر͢Δݚڀͷ
2. ر͢Δݚڀͷഎܠͱత
8 WebαʔϏεͷཁٻͷߴԽ ・サービスの信頼性の期待値向上 ・冗⻑性の確保,アクセス増に対するスケーラビリティの向上 ɾ୯ҰͷࣄۀऀʹΑΔෳͷαʔϏεల։ ɾڞ௨෦Λ֤αʔϏεͰڞ༗͢Δ͜ͱͰαʔϏεಉ͕࢜௨৴ ɾ10୯ҐͷظؒͷαʔϏεఏڙ ɾػೳͷՃɼιϑτΣΞͷߋ৽ɼγεςϜߏͷ৽ͳͲΛܧଓ ɾར༻ऀͷ͔ΒΫϥυͷωοτϫʔΫԆΛॖ ɾཧతʹࢄͨ͠ڥʹ͓͚ΔࢄΞϓϦέʔγϣϯઃܭ͕ࠓޙඞ
ཁͱͳΔ => ۭؒతӨڹൣғͷ૿େ => ࣌ؒతӨڹൣғͷ૿େ
9 ཧࢄԽʹؔ͢Δҙࣝ γεςϜͷ෦ঢ়ଶͷѲ ͕͘͠ͳΔ ωοτϫʔΫԆͷ૿Ճ ɾγεςϜʹมߋΛՃ͑Δલ ʹɼϦεΫͷൣғΛݟੵΕ ͳ͘ͳΔ ɾϦεΫ͕ݦࡏԽͨ͠ͱ͖ʹɼ ݪҼͷಛఆ͕͘ͳΔ
ɾ֤ڌʹࢄ͢Δσʔλͷ ಉظ͕ͪ࣌ؒେ͖͘ͳΔ ɾσʔλϕʔε(DBMS)ͷҰ؏ ੑͱੑೳΛཱ྆ͤͮ͞Β͍ ߏཁૉͷ૿Ճ
10 ઌߦݚڀͱ՝: Մ؍ଌੑ ࣌ؒ࣠ํͷՄ؍ଌੑ ۭؒ࣠ํͷՄ؍ଌੑ ɾ࣌ܥྻσʔλϕʔεʹ֤छ ܭଌΛอଘ͢Δ ɾੑೳΛॏࢹ࣮ͯ͠Λ࣌ܥ ྻσʔλʹ࠷దԽ͍ͯ͠Δ ɾطଘͷDBMSΛར༻ͨ͠ޓ
ੑ֦ுੑ͕ࣦΘΕΔ ɾαϒγεςϜؒͷґଘؔΛ ࣗಈͰ͢Δ ɾطଘͷΞϓϦέʔγϣϯίʔ υͷมߋΛͱͳ͏ɼ͋Δ͍ ΞϓϦέʔγϣϯʹ༩͑Δ ੑೳӨڹ͕େ͖͍
11 ઌߦݚڀͱ՝: ੑೳͱσʔλҰ؏ੑ ɾ֤ڌؒͰσʔλΛಉظߋ৽ ɾωοτϫʔΫԆͷେ͖͍ڌ ʹಉظ͕࣌ؒ͞ΕΔ ɾ֤ڌؒͷσʔλΛඇಉظߋ৽ ɾσʔλҰ؏ੑʹର͢ΔΞϓϦ έʔγϣϯ։ൃऀͷൣғ͕ େ͖͘ͳΔ
ऑ͍Ұ؏ੑ(݁Ռ߹ੑ) Ԇͷେ͖ͳڥͰͷੑೳͱσʔλҰ؏ੑͷཱ྆ ڧ͍Ұ؏ੑ
ݚڀͷత ɾత: ཧతʹࢄͨ͠ΞϓϦέʔγϣϯͷ৴པੑ্ ɾ੍: طଘͷΞϓϦέʔγϣϯϛυϧΣΞͷίʔυΛมߋͤͣɼ ੑೳӨڹΛ͋ͨ͑ͳ͍ ɾ3ͭͷݚڀ՝ 1. ࣌ؒ࣠ͷՄ؍ଌੑ: ࣌ܥྻσʔλϕʔεͷੑೳͱޓੑͷཱ྆
2. ۭؒ࣠ͷՄ؍ଌੑ: ґଘؔΛෛՙ͔ͭཏతʹ 3. σʔλͷҰ؏ੑΛอূͭͭ͠ɼԠੑೳΛ࠷େԽ 12
3. ر͢Δݚڀͷ՝ͱํ๏
՝(1) ࣌ؒ࣠ํͷՄ؍ଌੑ ࣌ܥྻσʔλϕʔεʹ͓͚Δੑೳͱ֦ுੑͷཱ྆
15 ఏҊ(1): ՝ͱఏҊ ࣌ܥྻσʔλϕʔεͷ՝ ɾطଘͷDBMSΛར༻ͨ͠ޓ ੑ͕ࣦΘΕΔ ఏҊ ɾ୯ҰͷDBMSΛσʔλߏ୯ҐͰ ղ͠ɼૄ݁߹Խ ɾΠϯϝϞϦͱΦϯσΟεΫͷKVSΛ
֊Խͯ͠ॲཧͱอଘͷޮԽ ɾ֤σʔλߏʹରͯ͠طଘͷDBMS Λར༻Մೳ In-Memory KVS On—Disk KVS Tiering Single DBMS DBMS Index DBMS Log ఏҊΞʔΩςΫνϟ
՝(2) ۭؒ࣠ํʹ͓͚ΔՄ؍ଌੑ ґଘؔΛ͢Δ্Ͱ ཏੑͱΦʔόʔϔουΛཱ྆
17 ఏҊ(2): ιέοτࢹ ґଘؔͷ՝ ɾطଘͷΞϓϦέʔγϣϯ ίʔυͷมߋΛͱͳ͏ɼ ͋Δ͍ΞϓϦέʔγϣϯ ʹ༩͑ΔੑೳӨڹ͕େ͖͍ ఏҊ ɾશαʔό্ͰɼOSΧʔωϧͷTCP
ଓͷऴͰ͋ΔιέοτΛࢹ ɾιέοτࢹϓϩηεΛஔ͢Δͷ ΈͰՄೳ ɾιέοτࢹΞϓϦέʔγϣϯͷ ௨৴ʹׂΓ͜·ͣɼΦʔόϔου Kernel Process TCP Flows . . . User ιέοτࢹ Process
՝(3) ཧࢄڥʹ͓͚Δσʔλϕʔε ͷҰ؏ੑͱੑೳͷཱ྆
19 ఏҊ(3): σʔλͷಉظൣғΛదԠతʹܾఆ σʔλҰ؏ੑͱੑೳͷ՝ ɾ֤ڌؒͰσʔλΛಉظߋ৽ ɾωοτϫʔΫԆͷେ͖ͳڌ ʹಉظॲཧ͕͞ΕΔ ఏҊ ɾಡΈࠐΈॲཧͷΈͷॖʹண͠ɼ தԝͷڌʹॻ͖ࠐΈΛ͚Δ
ɾશڌͰಉظͤͣʹɼதԝͷڌ͔ ΒωοτϫʔΫԆ͕ҰఆΑΓখ ͍͞Ұ෦ͷڌͷΈಉظ ɾΞϓϦέʔγϣϯ୯ҐͷಡΈॻ͖ൺ ʹج͖ͮಉظൣғΛదԠతʹܾఆ Origin தԝͷڌ Replica Τοδͷڌ Replica ಉظൣғ
4. ظ͞ΕΔݚڀՌ
21 ݚڀશମͷظ͞ΕΔߩݙ ɾطଘͷΞϓϦέʔγϣϯίʔυDBMSΛมߋͤͣɼ͔ͭੑೳʹେ ͖ͳӨڹΛ༩͑ͳ͍ͱ͍͏੍ͷͱ 1. ཧࢄΞϓϦέʔγϣϯͷՄ؍ଌੑΛ্Մೳ 2. ؍ଌ݁ՌΛར༻͠ԠੑೳΛ࠷େԽ͢ΔΑ͏ʹదԠతʹ੍ޚՄೳ ɾγεςϜཧऀͷෛ୲Λ૿ͣ͞ʹWebαʔϏεͷ৴པੑΛ্͞ ͤɼਓʑ͕WebαʔϏεΛշద͔ͭ࣋ଓతʹར༻Ͱ͖ΔΑ͏ʹͳΔ