Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 3章
Search
Masafumi Abeta
April 01, 2021
Science
1
93
ウェブ最適化からはじめる機械学習 3章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
April 01, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
140
GPTモデルでキャラクター設定する際の課題
abeta
0
250
GPTをLINEで使えるようにして布教した
abeta
0
140
【Nishika】プリント基板の電子部品検出
abeta
0
270
初心者向けChatGPT入門
abeta
0
210
GPT Short Talk
abeta
0
110
拡散モデルについて少しだけ
abeta
0
44
動的計画モデル
abeta
0
140
物体追跡
abeta
0
270
Other Decks in Science
See All in Science
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
510
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
150
学術講演会中央大学学員会いわき支部
tagtag
0
140
Tensor Representations in Signal Processing and Machine Learning (Tutorial at APSIPA-ASC 2020)
yokotatsuya
0
160
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.7k
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
110
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.2k
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
440
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
250
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1.3k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
250
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
780
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
51
7.5k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
A better future with KSS
kneath
238
17k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Being A Developer After 40
akosma
90
590k
The Cult of Friendly URLs
andyhume
78
6.3k
Code Review Best Practice
trishagee
67
18k
Visualization
eitanlees
146
16k
Designing for Performance
lara
606
69k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
320
Transcript
XX University ウェブ最適化からはじめる機械学習 3章 2021.3.30 Abeta
2 4つのデザインによるA/Bテスト 4種のデザインのパターンでコンバージョンを測定。 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ ヒーロー画像 ボタン 表⽰回数
クリック数 クリック率 A 商品イメージ 今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% A B C D
3 ベイズ推定によるクリック率推定 B、D案が良さそう。 ヒーロー画像 ボタン 表⽰回数 クリック数 クリック率 A 商品イメージ
今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% A C B D
4 効果分析 ボタンと画像がどれくらい影響しているのか?データの⽣成過程をモデリングする。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ ?! = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 ?" ?𝟐 分布のモデリング ?" ?" 効果を結合する関数 ?𝟏 のモデリング
5 関数のモデリング 効果を線形結合し、ロジット関数でモデリングする。 ヒーロー画像 ボタン 表⽰回数 クリック数 クリック率 A 商品イメージ
今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% 𝒙𝟏 𝒙𝟐 𝑵 𝒂 𝒂/𝑵 A 0 0 434 8 0.0184 B 0 1 382 17 0.0445 C 1 0 394 10 0.0254 D 1 1 88 4 0.0455 ダミー変数化 𝜃 = Logistic 𝛼 + 𝛽! 𝑥! + 𝛽" 𝑥" Logistic 𝑥 = 1 1 + 𝑒%& 関数のモデリング
6 分布のモデリング 連続分布で正負の値をとり、広い値域をとれる分布として正規分布を利⽤する。 事前分布の分散のを⼤きく設定すれば、広い値をとることを許容できる。
7 統計モデル 最終的な統計モデル。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 𝒩(𝜇2 , 𝜎2 ) 𝒩(𝜇! , 𝜎! ) 𝒩(𝜇" , 𝜎" )
8 統計モデルの推定結果 ヒーロ画像とボタンそれぞれの効果を評価できた。HDI区間は狭くなっている。 𝛽! 𝛽"
9 新たなデータに対する推定 ボタンの効果が低くなっている。 𝒙𝟏 𝒙𝟐 𝑵 𝒂 𝒂/𝑵 A 0
0 434 8 0.0184 B 0 1 382 17 0.0445 C 1 0 394 10 0.0254 D 1 1 412 4 0.0194 𝛽! 𝛽"
10 交互作⽤の追加 交互作⽤を追加してモデルを変更する。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" + 𝜸𝒙𝟏𝒙𝟐 = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 𝒩(𝜇2 , 𝜎2 ) 𝒩(𝜇! , 𝜎! ) 𝒩(𝜇" , 𝜎" ) 𝜸 交互作⽤の効果 ∼ 𝓝(𝝁𝟑 , 𝝈𝟑 ) 主効果
11 新たなモデルによる推定 ボタンの効果と交互作⽤の効果が認められる。 𝛽! 𝛽" 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ A
B C D 何を詳しく⾒るのか 分かりにくい 「今すぐ購⼊」より もハードルが低い
12 で、どのモデルを選べばいいの? 交互作⽤が多すぎても解釈しにくい。相関がある項を導⼊すると推定が不安定になる。 したがってシンプルなモデルからスタートし、可視化をしつつモデルに変数を加えていくのがよい。 定量的にモデルを評価するにはWAIC(widely applicable information criterion, Watanabe-Akaike information
criterion )という指標を使⽤する。 𝜽の⾯ WAIC = 3.9 WAIC = 2.1
13 (おまけ)AIC 真の分布:𝑞(𝑥) 確率モデル:𝑝(𝑥|𝑤) 予測分布: 𝑝 𝑥 * 𝑤 ,
* 𝑤は最尤推定量。 汎化損失:𝐿(* 𝑤) = −∫ 𝑑𝑥 𝑞 𝑥 log 𝑝(𝑥|* 𝑤) ← 知りたいもの (カルバック・ライブラ−情報量: 𝐾𝐿 = ∫ 𝑑𝑥 𝑞 𝑥 log " # $ 𝑥 * 𝑤 = ∫ 𝑑𝑥 𝑞 𝑥 log 𝑞 𝑥 + 𝐺% ) 経験対数損失関数: 𝐿(* 𝑤) = − ! % ∑&'! % log 𝑝 𝑋& * 𝑤 経験対数損失関数と汎化損失の間にはバイアスがある。 AIC = − 1 𝑛 < &'! % log 𝑝 𝑋& * 𝑤 + 𝑑 𝑛 , E AIC = E 𝐿 * 𝑤 + 𝜊 1 𝑛 ただし、AICは事後分布が正規分布で近似できることを仮定している。
14 (おまけ)WAIC 真の分布:𝑞(𝑥) 確率モデル:𝑝(𝑥|𝑤) 予測分布: 𝑝 𝑥 𝑋% = ∫
𝑑𝑤 𝑝 𝑥 𝑤 𝑝 𝑤 𝑋% , 𝑋% = (𝑋! , 𝑋( , 𝑋) , … , 𝑋% )はサンプル 汎化損失:𝐺% = −∫ 𝑑𝑥 𝑞 𝑥 log 𝑝(𝑥|𝑋%) ← 知りたいもの (カルバック・ライブラ−情報量: 𝐾𝐿 = ∫ 𝑑𝑥 𝑞 𝑥 log " # $ 𝑥 𝑋% = ∫ 𝑑𝑥 𝑞 𝑥 log 𝑞 𝑥 + 𝐺) 経験損失: 𝑇% = − ! % ∑&'! % log 𝑝 𝑋& 𝑋% 汎関数分散: 𝑉 % = ∑&'! % ∫ 𝑑𝑤 log 𝑝 𝑋& 𝑤 ( 𝑝 𝑤 𝑋% − ∫ 𝑑𝑤 log 𝑝 𝑋& 𝑤 𝑝(𝑤|𝑋%) ( WAIC:𝑊 % = 𝑇% + *+! % , E 𝐺% = E 𝑊 % + 𝜊 ! %
15 (おまけ)直交計画 「交互作⽤がない」と認めれば、検証する組み合わせを減らすことが出来る。農業や製造業などの実験が⼤変 なケースでは、データの⽣成過程を仮定して、実験数を減らすことができる。 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ A B
C D 𝜃 = Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" 𝒙𝟏 𝒙𝟐 A 0 0 B 0 1 C 1 0 D 1 1