Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 3章
Search
Masafumi Abeta
April 01, 2021
Science
1
93
ウェブ最適化からはじめる機械学習 3章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
April 01, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
230
GPTモデルでキャラクター設定する際の課題
abeta
0
280
GPTをLINEで使えるようにして布教した
abeta
0
160
【Nishika】プリント基板の電子部品検出
abeta
0
300
初心者向けChatGPT入門
abeta
0
220
GPT Short Talk
abeta
0
120
拡散モデルについて少しだけ
abeta
0
54
動的計画モデル
abeta
0
150
物体追跡
abeta
0
280
Other Decks in Science
See All in Science
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
640
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
440
Introd_Img_Process_2_Frequ
hachama
0
560
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
160
mathematics of indirect reciprocity
yohm
1
140
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
950
MCMCのR-hatは分散分析である
moricup
0
370
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
280
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
550
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
150
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
500
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
Featured
See All Featured
Done Done
chrislema
184
16k
Side Projects
sachag
455
42k
Facilitating Awesome Meetings
lara
54
6.4k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
The Language of Interfaces
destraynor
158
25k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Adopting Sorbet at Scale
ufuk
77
9.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Designing for Performance
lara
609
69k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Transcript
XX University ウェブ最適化からはじめる機械学習 3章 2021.3.30 Abeta
2 4つのデザインによるA/Bテスト 4種のデザインのパターンでコンバージョンを測定。 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ ヒーロー画像 ボタン 表⽰回数
クリック数 クリック率 A 商品イメージ 今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% A B C D
3 ベイズ推定によるクリック率推定 B、D案が良さそう。 ヒーロー画像 ボタン 表⽰回数 クリック数 クリック率 A 商品イメージ
今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% A C B D
4 効果分析 ボタンと画像がどれくらい影響しているのか?データの⽣成過程をモデリングする。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ ?! = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 ?" ?𝟐 分布のモデリング ?" ?" 効果を結合する関数 ?𝟏 のモデリング
5 関数のモデリング 効果を線形結合し、ロジット関数でモデリングする。 ヒーロー画像 ボタン 表⽰回数 クリック数 クリック率 A 商品イメージ
今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% 𝒙𝟏 𝒙𝟐 𝑵 𝒂 𝒂/𝑵 A 0 0 434 8 0.0184 B 0 1 382 17 0.0445 C 1 0 394 10 0.0254 D 1 1 88 4 0.0455 ダミー変数化 𝜃 = Logistic 𝛼 + 𝛽! 𝑥! + 𝛽" 𝑥" Logistic 𝑥 = 1 1 + 𝑒%& 関数のモデリング
6 分布のモデリング 連続分布で正負の値をとり、広い値域をとれる分布として正規分布を利⽤する。 事前分布の分散のを⼤きく設定すれば、広い値をとることを許容できる。
7 統計モデル 最終的な統計モデル。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 𝒩(𝜇2 , 𝜎2 ) 𝒩(𝜇! , 𝜎! ) 𝒩(𝜇" , 𝜎" )
8 統計モデルの推定結果 ヒーロ画像とボタンそれぞれの効果を評価できた。HDI区間は狭くなっている。 𝛽! 𝛽"
9 新たなデータに対する推定 ボタンの効果が低くなっている。 𝒙𝟏 𝒙𝟐 𝑵 𝒂 𝒂/𝑵 A 0
0 434 8 0.0184 B 0 1 382 17 0.0445 C 1 0 394 10 0.0254 D 1 1 412 4 0.0194 𝛽! 𝛽"
10 交互作⽤の追加 交互作⽤を追加してモデルを変更する。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" + 𝜸𝒙𝟏𝒙𝟐 = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 𝒩(𝜇2 , 𝜎2 ) 𝒩(𝜇! , 𝜎! ) 𝒩(𝜇" , 𝜎" ) 𝜸 交互作⽤の効果 ∼ 𝓝(𝝁𝟑 , 𝝈𝟑 ) 主効果
11 新たなモデルによる推定 ボタンの効果と交互作⽤の効果が認められる。 𝛽! 𝛽" 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ A
B C D 何を詳しく⾒るのか 分かりにくい 「今すぐ購⼊」より もハードルが低い
12 で、どのモデルを選べばいいの? 交互作⽤が多すぎても解釈しにくい。相関がある項を導⼊すると推定が不安定になる。 したがってシンプルなモデルからスタートし、可視化をしつつモデルに変数を加えていくのがよい。 定量的にモデルを評価するにはWAIC(widely applicable information criterion, Watanabe-Akaike information
criterion )という指標を使⽤する。 𝜽の⾯ WAIC = 3.9 WAIC = 2.1
13 (おまけ)AIC 真の分布:𝑞(𝑥) 確率モデル:𝑝(𝑥|𝑤) 予測分布: 𝑝 𝑥 * 𝑤 ,
* 𝑤は最尤推定量。 汎化損失:𝐿(* 𝑤) = −∫ 𝑑𝑥 𝑞 𝑥 log 𝑝(𝑥|* 𝑤) ← 知りたいもの (カルバック・ライブラ−情報量: 𝐾𝐿 = ∫ 𝑑𝑥 𝑞 𝑥 log " # $ 𝑥 * 𝑤 = ∫ 𝑑𝑥 𝑞 𝑥 log 𝑞 𝑥 + 𝐺% ) 経験対数損失関数: 𝐿(* 𝑤) = − ! % ∑&'! % log 𝑝 𝑋& * 𝑤 経験対数損失関数と汎化損失の間にはバイアスがある。 AIC = − 1 𝑛 < &'! % log 𝑝 𝑋& * 𝑤 + 𝑑 𝑛 , E AIC = E 𝐿 * 𝑤 + 𝜊 1 𝑛 ただし、AICは事後分布が正規分布で近似できることを仮定している。
14 (おまけ)WAIC 真の分布:𝑞(𝑥) 確率モデル:𝑝(𝑥|𝑤) 予測分布: 𝑝 𝑥 𝑋% = ∫
𝑑𝑤 𝑝 𝑥 𝑤 𝑝 𝑤 𝑋% , 𝑋% = (𝑋! , 𝑋( , 𝑋) , … , 𝑋% )はサンプル 汎化損失:𝐺% = −∫ 𝑑𝑥 𝑞 𝑥 log 𝑝(𝑥|𝑋%) ← 知りたいもの (カルバック・ライブラ−情報量: 𝐾𝐿 = ∫ 𝑑𝑥 𝑞 𝑥 log " # $ 𝑥 𝑋% = ∫ 𝑑𝑥 𝑞 𝑥 log 𝑞 𝑥 + 𝐺) 経験損失: 𝑇% = − ! % ∑&'! % log 𝑝 𝑋& 𝑋% 汎関数分散: 𝑉 % = ∑&'! % ∫ 𝑑𝑤 log 𝑝 𝑋& 𝑤 ( 𝑝 𝑤 𝑋% − ∫ 𝑑𝑤 log 𝑝 𝑋& 𝑤 𝑝(𝑤|𝑋%) ( WAIC:𝑊 % = 𝑇% + *+! % , E 𝐺% = E 𝑊 % + 𝜊 ! %
15 (おまけ)直交計画 「交互作⽤がない」と認めれば、検証する組み合わせを減らすことが出来る。農業や製造業などの実験が⼤変 なケースでは、データの⽣成過程を仮定して、実験数を減らすことができる。 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ A B
C D 𝜃 = Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" 𝒙𝟏 𝒙𝟐 A 0 0 B 0 1 C 1 0 D 1 1