Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
49
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
350
GPTモデルでキャラクター設定する際の課題
abeta
0
340
GPTをLINEで使えるようにして布教した
abeta
0
180
【Nishika】プリント基板の電子部品検出
abeta
0
320
初心者向けChatGPT入門
abeta
0
250
GPT Short Talk
abeta
0
140
拡散モデルについて少しだけ
abeta
0
69
動的計画モデル
abeta
0
170
物体追跡
abeta
0
320
Other Decks in Programming
See All in Programming
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
5
710
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
150
Vibe codingでおすすめの言語と開発手法
uyuki234
0
110
TestingOsaka6_Ozono
o3
0
170
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
440
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
290
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
160
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
310
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
1.7k
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
170
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
470
Featured
See All Featured
[SF Ruby Conf 2025] Rails X
palkan
0
560
First, design no harm
axbom
PRO
1
1.1k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Darren the Foodie - Storyboard
khoart
PRO
0
1.9k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
400
Odyssey Design
rkendrick25
PRO
0
430
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
170
The Cult of Friendly URLs
andyhume
79
6.7k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
69
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.2k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
27
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。