Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
45
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
65
GPTモデルでキャラクター設定する際の課題
abeta
0
220
GPTをLINEで使えるようにして布教した
abeta
0
120
【Nishika】プリント基板の電子部品検出
abeta
0
220
初心者向けChatGPT入門
abeta
0
190
GPT Short Talk
abeta
0
100
拡散モデルについて少しだけ
abeta
0
31
動的計画モデル
abeta
0
130
物体追跡
abeta
0
260
Other Decks in Programming
See All in Programming
モバイルアプリにおける自動テストの導入戦略
ostk0069
0
110
「とりあえず動く」コードはよい、「読みやすい」コードはもっとよい / Code that 'just works' is good, but code that is 'readable' is even better.
mkmk884
3
490
創造的活動から切り拓く新たなキャリア 好きから始めてみる夜勤オペレーターからSREへの転身
yjszk
1
130
tidymodelsによるtidyな生存時間解析 / Japan.R2024
dropout009
1
790
ある日突然あなたが管理しているサーバーにDDoSが来たらどうなるでしょう?知ってるようで何も知らなかったDDoS攻撃と対策 #phpcon.2024
akase244
1
140
Effective Signals in Angular 19+: Rules and Helpers
manfredsteyer
PRO
0
110
Security_for_introducing_eBPF
kentatada
0
110
Fibonacci Function Gallery - Part 1
philipschwarz
PRO
0
220
Keeping it Ruby: Why Your Product Needs a Ruby SDK - RubyWorld 2024
envek
0
190
ドメインイベント増えすぎ問題
h0r15h0
2
350
Go の GC の不得意な部分を克服したい
taiyow
3
800
テスト自動化失敗から再挑戦しチームにオーナーシップを委譲した話/STAC2024 macho
ma_cho29
1
1.3k
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
It's Worth the Effort
3n
183
28k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
95
17k
A better future with KSS
kneath
238
17k
GraphQLとの向き合い方2022年版
quramy
44
13k
Rails Girls Zürich Keynote
gr2m
94
13k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。