Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
49
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
330
GPTモデルでキャラクター設定する際の課題
abeta
0
330
GPTをLINEで使えるようにして布教した
abeta
0
180
【Nishika】プリント基板の電子部品検出
abeta
0
320
初心者向けChatGPT入門
abeta
0
240
GPT Short Talk
abeta
0
130
拡散モデルについて少しだけ
abeta
0
66
動的計画モデル
abeta
0
170
物体追跡
abeta
0
310
Other Decks in Programming
See All in Programming
認証・認可の基本を学ぼう前編
kouyuume
0
150
connect-python: convenient protobuf RPC for Python
anuraaga
0
350
目的で駆動する、AI時代のアーキテクチャ設計 / purpose-driven-architecture
minodriven
11
3.9k
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
110
CSC305 Lecture 15
javiergs
PRO
0
240
20 years of Symfony, what's next?
fabpot
2
310
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
2
1.1k
sbt 2
xuwei_k
0
190
React Native New Architecture 移行実践報告
taminif
1
130
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
180
レイトレZ世代に捧ぐ、今からレイトレを始めるための小径
ichi_raven
0
490
dotfiles 式年遷宮 令和最新版
masawada
1
670
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7.2k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Building an army of robots
kneath
306
46k
Designing for Performance
lara
610
69k
Facilitating Awesome Meetings
lara
57
6.7k
Side Projects
sachag
455
43k
Done Done
chrislema
186
16k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
120
20k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。