Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
48
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
280
GPTモデルでキャラクター設定する際の課題
abeta
0
300
GPTをLINEで使えるようにして布教した
abeta
0
170
【Nishika】プリント基板の電子部品検出
abeta
0
310
初心者向けChatGPT入門
abeta
0
230
GPT Short Talk
abeta
0
130
拡散モデルについて少しだけ
abeta
0
61
動的計画モデル
abeta
0
160
物体追跡
abeta
0
290
Other Decks in Programming
See All in Programming
HTMLの品質ってなんだっけ? “HTMLクライテリア”の設計と実践
unachang113
4
2.9k
The Past, Present, and Future of Enterprise Java with ASF in the Middle
ivargrimstad
0
180
アセットのコンパイルについて
ojun9
0
130
AIと私たちの学習の変化を考える - Claude Codeの学習モードを例に
azukiazusa1
11
4.4k
Android 16 × Jetpack Composeで縦書きテキストエディタを作ろう / Vertical Text Editor with Compose on Android 16
cc4966
2
270
基礎から学ぶ大画面対応(Learning Large-Screen Support from the Ground Up)
tomoya0x00
0
4.3k
FindyにおけるTakumi活用と脆弱性管理のこれから
rvirus0817
0
540
ユーザーも開発者も悩ませない TV アプリ開発 ~Compose の内部実装から学ぶフォーカス制御~
taked137
0
190
Navigating Dependency Injection with Metro
zacsweers
3
3.5k
「手軽で便利」に潜む罠。 Popover API を WCAG 2.2の視点で安全に使うには
taitotnk
0
870
概念モデル→論理モデルで気をつけていること
sunnyone
3
300
AI Coding Agentのセキュリティリスク:PRの自己承認とメルカリの対策
s3h
0
240
Featured
See All Featured
A designer walks into a library…
pauljervisheath
207
24k
Optimizing for Happiness
mojombo
379
70k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Faster Mobile Websites
deanohume
309
31k
Speed Design
sergeychernyshev
32
1.1k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Building Applications with DynamoDB
mza
96
6.6k
4 Signs Your Business is Dying
shpigford
184
22k
What's in a price? How to price your products and services
michaelherold
246
12k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
KATA
mclloyd
32
14k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。