Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
48
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
220
GPTモデルでキャラクター設定する際の課題
abeta
0
280
GPTをLINEで使えるようにして布教した
abeta
0
160
【Nishika】プリント基板の電子部品検出
abeta
0
290
初心者向けChatGPT入門
abeta
0
220
GPT Short Talk
abeta
0
120
拡散モデルについて少しだけ
abeta
0
54
動的計画モデル
abeta
0
150
物体追跡
abeta
0
280
Other Decks in Programming
See All in Programming
GitHub Copilot and GitHub Codespaces Hands-on
ymd65536
1
130
なんとなくわかった気になるブロックテーマ入門/contents.nagoya 2025 6.28
chiilog
1
250
AWS CDKの推しポイント 〜CloudFormationと比較してみた〜
akihisaikeda
3
320
エンジニア向け採用ピッチ資料
inusan
0
180
ペアプロ × 生成AI 現場での実践と課題について / generative-ai-in-pair-programming
codmoninc
0
270
設計やレビューに悩んでいるPHPerに贈る、クリーンなオブジェクト設計の指針たち
panda_program
6
1.8k
dbt民主化とLLMによる開発ブースト ~ AI Readyな分析サイクルを目指して ~
yoshyum
2
240
今ならAmazon ECSのサービス間通信をどう選ぶか / Selection of ECS Interservice Communication 2025
tkikuc
21
3.8k
技術同人誌をMCP Serverにしてみた
74th
1
520
Code as Context 〜 1にコードで 2にリンタ 34がなくて 5にルール? 〜
yodakeisuke
0
120
Flutterで備える!Accessibility Nutrition Labels完全ガイド
yuukiw00w
0
140
20250704_教育事業におけるアジャイルなデータ基盤構築
hanon52_
4
240
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
430
65k
Become a Pro
speakerdeck
PRO
28
5.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
A Modern Web Designer's Workflow
chriscoyier
694
190k
The Invisible Side of Design
smashingmag
300
51k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Faster Mobile Websites
deanohume
307
31k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
17
950
Building an army of robots
kneath
306
45k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
800
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。