Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Go as an aggregator in recommendation systems
Search
Agata Naomichi
July 26, 2018
Programming
2
1.4k
Go as an aggregator in recommendation systems
Agata Naomichi
July 26, 2018
Tweet
Share
More Decks by Agata Naomichi
See All by Agata Naomichi
チームで開発し事業を加速するための"良い"設計の考え方 @ サポーターズCoLab 2025-07-08
agatan
1
460
医療系スタートアップが経験した 認知負荷問題の症状分析と処方箋 チーム分割による認知負荷の軽減 / Cognitive Load Busters
agatan
2
520
専門性の高い領域をいかに開発し、 テストするか / How to test and develop complicated systems with Domain Experts!
agatan
3
790
Henry のサーバーサイドアーキテクチャ 狙いと課題 2022.08.25 / Server-Side Architecture at Henry, Inc.
agatan
3
5.3k
The Web Conference 2020 - Participation Report
agatan
1
700
○○2vec 再考
agatan
1
4.4k
Improving "People You May Know" on Directed Social Graph
agatan
4
2.6k
Machine Learning and Feedback
agatan
1
1.5k
Recommendation systems on microservices - productivity & reproducibility
agatan
0
880
Other Decks in Programming
See All in Programming
状態遷移図を書こう / Sequence Chart vs State Diagram
orgachem
PRO
2
190
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
2
650
Agentic Coding: The Future of Software Development with Agents
mitsuhiko
0
120
新メンバーも今日から大活躍!SREが支えるスケールし続ける組織のオンボーディング
honmarkhunt
5
8.5k
20250704_教育事業におけるアジャイルなデータ基盤構築
hanon52_
5
950
AI時代のソフトウェア開発を考える(2025/07版) / Agentic Software Engineering Findy 2025-07 Edition
twada
PRO
98
35k
The Modern View Layer Rails Deserves: A Vision For 2025 And Beyond @ RailsConf 2025, Philadelphia, PA
marcoroth
2
680
AIと”コードの評価関数”を共有する / Share the "code evaluation function" with AI
euglena1215
1
180
Composerが「依存解決」のためにどんな工夫をしているか #phpcon
o0h
PRO
1
330
Goで作る、開発・CI環境
sin392
0
260
AI駆動のマルチエージェントによる業務フロー自動化の設計と実践
h_okkah
0
220
ペアプロ × 生成AI 現場での実践と課題について / generative-ai-in-pair-programming
codmoninc
2
21k
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Six Lessons from altMBA
skipperchong
28
3.9k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
830
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Music & Morning Musume
bryan
46
6.7k
A Tale of Four Properties
chriscoyier
160
23k
Automating Front-end Workflow
addyosmani
1370
200k
Become a Pro
speakerdeck
PRO
29
5.4k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Transcript
©2018 Wantedly, Inc. Go as an aggregator In Recommendation Systems
26.Jul.2018 - Naomichi Agata
©2018 Wantedly, Inc. agatan Software engineer at Wantedly, inc. Server
side + Machine learning Github Twitter @agatan @agatan_
©2018 Wantedly, Inc. Everything is a Recommendation https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Recommendations ΄ͱΜͲͷαʔϏεͰʮԿ͔Λਪન͢Δʯͱ͍͏ػೳ͋Δ
©2018 Wantedly, Inc. Impact of Recommendations ⾣Linkedinͷͭͳ͕Γͷ50%Ҏ্ʮΓ߹͍Ͱ͔͢ʁʯܦ༝ ⾣ https://engineering.linkedin.com/teams/data/projects/pymk ⾣NetflixਪનγεςϜͷcompetition
Λ։࠵ۚ͠$1 Million Λग़͍ͯ͠Δ ⾣ https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Components of Recommendations ਪનͷࠜڌ͍ΖΜͳॴʹ͋Δ ⾣ʮ˓˓͞Μ͕-JLF͠·ͨ͠ʯ ⾣ʮ͜ͷΛߪೖͨ͠ਓ͜ͷങ͍ͬͯ·͢ʯ ⾣ʮڞ௨ͷͭͳ͕Γ͕ਓ͍·͢ʯ
⾣ʮͷχϡʔεʯ ⾣ʮ˓˓Λݕࡧͨ͠ํʯ ⾣ʮಉ͡ձࣾͰಇ͍͍ͯΔϢʔβʯ
©2018 Wantedly, Inc. Order of Recommendations ΑΓྑ͍ΞΠςϜΛɺΑΓྑ͍ॱংͰఏࣔ͢Δ͜ͱ͕ٻΊΒΕΔ ⾣Hot Topics ͳΔ͘͘ఏ͍ࣔͨ͠
⾣֬ݻͨΔࣗ৴ͷ͋ΔਪનΛ༏ઌͯ͠ݟ͍ͤͨ ⾣શମͰͷਓؾॱΑΓύʔιφϥΠζͨ͠ॱংΛఏڙ͍ͨ͠ ⾣αʔϏεݻ༗ͷׂΓࠐΈ͋Δ͔͠Εͳ͍ by Google
©2018 Wantedly, Inc. Recommendations with strategies
©2018 Wantedly, Inc. aggregator Strategy Strategy Strategy Strategy ༑ୡ͕-JLFͨ͠ΞΠςϜΛఏࣔ ߪೖཤྺ͔Βͷ͓͢͢Ί
ͷΞΠςϜ ϓϩϑΟʔϧ͔Βͷ͓͢͢Ί Recommendations with strategies Strategy Λ࣮ߦ ݁ՌΛू re-ordering ฒߦॲཧ
©2018 Wantedly, Inc. Recommendations with strategies ֤strategy͕ਪનΞΠςϜΛఏࣔ UZQF4USBUFHZJOUFSGBDF\ /BNF 4USBUFHZ/BNF
4VHHFTU DUYDPOUFYU$POUFYU VTFS*%JOU TJ[FJOU <> 4VHHFTU6TFS FSSPS ^ UZQF4VHHFTU6TFSTUSVDU\ 6TFS*%JOU 4DPSFqPBU 4USBUFHZ/BNF4USBUFHZ/BNF 3FBTPOJOUFSGBDF\^GPSMPHHJOH ^
©2018 Wantedly, Inc. Recommendations with strategies ͦΕΒΛฒߦʹ࣮ߦ͠ू ࠷ऴతͳॱংΛܾఆ͢Δ GPS@ TSBOHFTUSBUFHJFT\
XH"EE HPGVOD T4USBUFHZ \ EFGFSXH%POF TT FSST4VHHFTU DUY VTFS*% TJ[F JGFSSOJM\ SFQPSUFSSPS SFUVSO ^ NV-PDL TVHHFTUJPOTBQQFOE TVHHFTUJPOT TT NV6OMPDL ^ T ^
©2018 Wantedly, Inc. Why Go? Machine Learning ͱ Microservices ͳߏ
ˠ֤Strategy API CallΛؚΈ͏Δ ˠฒߦॲཧʹڧ͍͜ͱ͕׆͖Δ aggregator microservices
©2018 Wantedly, Inc. Responsibility of Aggregator ⾣Logging ⾣ ͲͷStrategy ͕Ͳͷ͘Β͍ՌΛ͍͋͛ͯΔ͔
⾣֤Strategy ͷείΞͷॏΈ͚ʹΑΔϥϯΩϯά ⾣e.g. ͢Ͱʹఏࣔͨ͜͠ͱͷ͋ΔΞΠςϜͷείΞΛݮਰͤ͞Δ ⾣A/B Testing
©2018 Wantedly, Inc. Problems… ⾣Frror reporting ⾣ ͋Δstrategy ͕ࢮΜͰ͍ͯશମࢭ·Βͳ͍Ͱ΄͍͠ ⾣ࢮΜͩ͜ͱʹؾ͖͍ͨ
⾣Frror reporting service Λ׆༻ ⾣ෳͷStrategy Ͱಉ͡API CallΛͨ͘͠ͳΔ ⾣e.g. Profile Service ʹॴଐΛ͍߹ΘͤΔ࠷ۙങͬͨͷΧςΰϦ͕Γ͍ͨ ⾣HPMBOHPSHYTZODTJOHMFqJHIU ΠϯϝϞϦΩϟογϡͰແཧཧଋͶΔ ⾣Ͳ͜·Ͱaggregator ͕ܭࢉ͢Δ͖͔
©2018 Wantedly, Inc. Conclusion ⾣ਪનγεςϜ͍ΖΜͳཁૉͷΈ߹Θͤ ⾣Microservices / Machine Learning ⾣A/B
Test ͕ॏཁ ⾣࣮ࡍʹԿΛݟ͔ͤͨɺԿ͕Action ʹͭͳ͕͔ͬͨLogging ͍ͨ͠ ⾣લஈʹGo Λ͓͘ͱศར ⾣Concurrent ʹ͍ΖΜͳStrategy Λ࣮ߦ͢Δͷ͕؆୯