Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Go as an aggregator in recommendation systems
Search
Agata Naomichi
July 26, 2018
Programming
2
1.4k
Go as an aggregator in recommendation systems
Agata Naomichi
July 26, 2018
Tweet
Share
More Decks by Agata Naomichi
See All by Agata Naomichi
Why Kotlin? 電子カルテを Kotlin で開発する理由 / Why Kotlin? at Henry
agatan
2
8.4k
全員アーキテクトで挑む、 巨大で高密度なドメインの紐解き方
agatan
8
22k
チームで開発し事業を加速するための"良い"設計の考え方 @ サポーターズCoLab 2025-07-08
agatan
2
640
医療系スタートアップが経験した 認知負荷問題の症状分析と処方箋 チーム分割による認知負荷の軽減 / Cognitive Load Busters
agatan
2
580
専門性の高い領域をいかに開発し、 テストするか / How to test and develop complicated systems with Domain Experts!
agatan
3
870
Henry のサーバーサイドアーキテクチャ 狙いと課題 2022.08.25 / Server-Side Architecture at Henry, Inc.
agatan
3
5.8k
The Web Conference 2020 - Participation Report
agatan
1
730
○○2vec 再考
agatan
1
4.6k
Improving "People You May Know" on Directed Social Graph
agatan
4
2.7k
Other Decks in Programming
See All in Programming
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
350
AgentCoreとHuman in the Loop
har1101
5
200
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
190
AIエージェントの設計で注意するべきポイント6選
har1101
6
3.2k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
520
dchart: charts from deck markup
ajstarks
3
970
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
150
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
180
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
920
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
410
Deno Tunnel を使ってみた話
kamekyame
0
350
gunshi
kazupon
1
140
Featured
See All Featured
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Ruling the World: When Life Gets Gamed
codingconduct
0
130
How to build a perfect <img>
jonoalderson
1
4.9k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
The SEO Collaboration Effect
kristinabergwall1
0
340
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
280
Building the Perfect Custom Keyboard
takai
2
670
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Transcript
©2018 Wantedly, Inc. Go as an aggregator In Recommendation Systems
26.Jul.2018 - Naomichi Agata
©2018 Wantedly, Inc. agatan Software engineer at Wantedly, inc. Server
side + Machine learning Github Twitter @agatan @agatan_
©2018 Wantedly, Inc. Everything is a Recommendation https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Recommendations ΄ͱΜͲͷαʔϏεͰʮԿ͔Λਪન͢Δʯͱ͍͏ػೳ͋Δ
©2018 Wantedly, Inc. Impact of Recommendations ⾣Linkedinͷͭͳ͕Γͷ50%Ҏ্ʮΓ߹͍Ͱ͔͢ʁʯܦ༝ ⾣ https://engineering.linkedin.com/teams/data/projects/pymk ⾣NetflixਪનγεςϜͷcompetition
Λ։࠵ۚ͠$1 Million Λग़͍ͯ͠Δ ⾣ https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Components of Recommendations ਪનͷࠜڌ͍ΖΜͳॴʹ͋Δ ⾣ʮ˓˓͞Μ͕-JLF͠·ͨ͠ʯ ⾣ʮ͜ͷΛߪೖͨ͠ਓ͜ͷങ͍ͬͯ·͢ʯ ⾣ʮڞ௨ͷͭͳ͕Γ͕ਓ͍·͢ʯ
⾣ʮͷχϡʔεʯ ⾣ʮ˓˓Λݕࡧͨ͠ํʯ ⾣ʮಉ͡ձࣾͰಇ͍͍ͯΔϢʔβʯ
©2018 Wantedly, Inc. Order of Recommendations ΑΓྑ͍ΞΠςϜΛɺΑΓྑ͍ॱংͰఏࣔ͢Δ͜ͱ͕ٻΊΒΕΔ ⾣Hot Topics ͳΔ͘͘ఏ͍ࣔͨ͠
⾣֬ݻͨΔࣗ৴ͷ͋ΔਪનΛ༏ઌͯ͠ݟ͍ͤͨ ⾣શମͰͷਓؾॱΑΓύʔιφϥΠζͨ͠ॱংΛఏڙ͍ͨ͠ ⾣αʔϏεݻ༗ͷׂΓࠐΈ͋Δ͔͠Εͳ͍ by Google
©2018 Wantedly, Inc. Recommendations with strategies
©2018 Wantedly, Inc. aggregator Strategy Strategy Strategy Strategy ༑ୡ͕-JLFͨ͠ΞΠςϜΛఏࣔ ߪೖཤྺ͔Βͷ͓͢͢Ί
ͷΞΠςϜ ϓϩϑΟʔϧ͔Βͷ͓͢͢Ί Recommendations with strategies Strategy Λ࣮ߦ ݁ՌΛू re-ordering ฒߦॲཧ
©2018 Wantedly, Inc. Recommendations with strategies ֤strategy͕ਪનΞΠςϜΛఏࣔ UZQF4USBUFHZJOUFSGBDF\ /BNF 4USBUFHZ/BNF
4VHHFTU DUYDPOUFYU$POUFYU VTFS*%JOU TJ[FJOU <> 4VHHFTU6TFS FSSPS ^ UZQF4VHHFTU6TFSTUSVDU\ 6TFS*%JOU 4DPSFqPBU 4USBUFHZ/BNF4USBUFHZ/BNF 3FBTPOJOUFSGBDF\^GPSMPHHJOH ^
©2018 Wantedly, Inc. Recommendations with strategies ͦΕΒΛฒߦʹ࣮ߦ͠ू ࠷ऴతͳॱংΛܾఆ͢Δ GPS@ TSBOHFTUSBUFHJFT\
XH"EE HPGVOD T4USBUFHZ \ EFGFSXH%POF TT FSST4VHHFTU DUY VTFS*% TJ[F JGFSSOJM\ SFQPSUFSSPS SFUVSO ^ NV-PDL TVHHFTUJPOTBQQFOE TVHHFTUJPOT TT NV6OMPDL ^ T ^
©2018 Wantedly, Inc. Why Go? Machine Learning ͱ Microservices ͳߏ
ˠ֤Strategy API CallΛؚΈ͏Δ ˠฒߦॲཧʹڧ͍͜ͱ͕׆͖Δ aggregator microservices
©2018 Wantedly, Inc. Responsibility of Aggregator ⾣Logging ⾣ ͲͷStrategy ͕Ͳͷ͘Β͍ՌΛ͍͋͛ͯΔ͔
⾣֤Strategy ͷείΞͷॏΈ͚ʹΑΔϥϯΩϯά ⾣e.g. ͢Ͱʹఏࣔͨ͜͠ͱͷ͋ΔΞΠςϜͷείΞΛݮਰͤ͞Δ ⾣A/B Testing
©2018 Wantedly, Inc. Problems… ⾣Frror reporting ⾣ ͋Δstrategy ͕ࢮΜͰ͍ͯશମࢭ·Βͳ͍Ͱ΄͍͠ ⾣ࢮΜͩ͜ͱʹؾ͖͍ͨ
⾣Frror reporting service Λ׆༻ ⾣ෳͷStrategy Ͱಉ͡API CallΛͨ͘͠ͳΔ ⾣e.g. Profile Service ʹॴଐΛ͍߹ΘͤΔ࠷ۙങͬͨͷΧςΰϦ͕Γ͍ͨ ⾣HPMBOHPSHYTZODTJOHMFqJHIU ΠϯϝϞϦΩϟογϡͰແཧཧଋͶΔ ⾣Ͳ͜·Ͱaggregator ͕ܭࢉ͢Δ͖͔
©2018 Wantedly, Inc. Conclusion ⾣ਪનγεςϜ͍ΖΜͳཁૉͷΈ߹Θͤ ⾣Microservices / Machine Learning ⾣A/B
Test ͕ॏཁ ⾣࣮ࡍʹԿΛݟ͔ͤͨɺԿ͕Action ʹͭͳ͕͔ͬͨLogging ͍ͨ͠ ⾣લஈʹGo Λ͓͘ͱศར ⾣Concurrent ʹ͍ΖΜͳStrategy Λ࣮ߦ͢Δͷ͕؆୯