Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Go as an aggregator in recommendation systems
Search
Agata Naomichi
July 26, 2018
Programming
2
1.4k
Go as an aggregator in recommendation systems
Agata Naomichi
July 26, 2018
Tweet
Share
More Decks by Agata Naomichi
See All by Agata Naomichi
チームで開発し事業を加速するための"良い"設計の考え方 @ サポーターズCoLab 2025-07-08
agatan
1
520
医療系スタートアップが経験した 認知負荷問題の症状分析と処方箋 チーム分割による認知負荷の軽減 / Cognitive Load Busters
agatan
2
530
専門性の高い領域をいかに開発し、 テストするか / How to test and develop complicated systems with Domain Experts!
agatan
3
810
Henry のサーバーサイドアーキテクチャ 狙いと課題 2022.08.25 / Server-Side Architecture at Henry, Inc.
agatan
3
5.5k
The Web Conference 2020 - Participation Report
agatan
1
700
○○2vec 再考
agatan
1
4.5k
Improving "People You May Know" on Directed Social Graph
agatan
4
2.6k
Machine Learning and Feedback
agatan
1
1.5k
Recommendation systems on microservices - productivity & reproducibility
agatan
0
890
Other Decks in Programming
See All in Programming
開発チーム・開発組織の設計改善スキルの向上
masuda220
PRO
15
8.4k
Scale out your Claude Code ~自社専用Agentで10xする開発プロセス~
yukukotani
9
2.6k
RDoc meets YARD
okuramasafumi
3
140
コンテキストエンジニアリング Cursor編
kinopeee
1
710
学習を成果に繋げるための個人開発の考え方 〜 「学習のための個人開発」のすすめ / personal project for leaning
panda_program
1
110
WebAssemblyインタプリタを書く ~Component Modelを添えて~
ruccho
1
920
画像コンペでのベースラインモデルの育て方
tattaka
3
1.9k
CSC305 Summer Lecture 12
javiergs
PRO
0
130
MCPで実現するAIエージェント駆動のNext.jsアプリデバッグ手法
nyatinte
7
910
KessokuでDIでもgoroutineを活用する / Go Connect #6
mazrean
0
120
AHC051解法紹介
eijirou
0
630
Kiroの仕様駆動開発から見えてきたAIコーディングとの正しい付き合い方
clshinji
1
160
Featured
See All Featured
The Invisible Side of Design
smashingmag
301
51k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Navigating Team Friction
lara
189
15k
Producing Creativity
orderedlist
PRO
347
40k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
A Tale of Four Properties
chriscoyier
160
23k
4 Signs Your Business is Dying
shpigford
184
22k
Designing for Performance
lara
610
69k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Transcript
©2018 Wantedly, Inc. Go as an aggregator In Recommendation Systems
26.Jul.2018 - Naomichi Agata
©2018 Wantedly, Inc. agatan Software engineer at Wantedly, inc. Server
side + Machine learning Github Twitter @agatan @agatan_
©2018 Wantedly, Inc. Everything is a Recommendation https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Recommendations ΄ͱΜͲͷαʔϏεͰʮԿ͔Λਪન͢Δʯͱ͍͏ػೳ͋Δ
©2018 Wantedly, Inc. Impact of Recommendations ⾣Linkedinͷͭͳ͕Γͷ50%Ҏ্ʮΓ߹͍Ͱ͔͢ʁʯܦ༝ ⾣ https://engineering.linkedin.com/teams/data/projects/pymk ⾣NetflixਪનγεςϜͷcompetition
Λ։࠵ۚ͠$1 Million Λग़͍ͯ͠Δ ⾣ https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Components of Recommendations ਪનͷࠜڌ͍ΖΜͳॴʹ͋Δ ⾣ʮ˓˓͞Μ͕-JLF͠·ͨ͠ʯ ⾣ʮ͜ͷΛߪೖͨ͠ਓ͜ͷങ͍ͬͯ·͢ʯ ⾣ʮڞ௨ͷͭͳ͕Γ͕ਓ͍·͢ʯ
⾣ʮͷχϡʔεʯ ⾣ʮ˓˓Λݕࡧͨ͠ํʯ ⾣ʮಉ͡ձࣾͰಇ͍͍ͯΔϢʔβʯ
©2018 Wantedly, Inc. Order of Recommendations ΑΓྑ͍ΞΠςϜΛɺΑΓྑ͍ॱংͰఏࣔ͢Δ͜ͱ͕ٻΊΒΕΔ ⾣Hot Topics ͳΔ͘͘ఏ͍ࣔͨ͠
⾣֬ݻͨΔࣗ৴ͷ͋ΔਪનΛ༏ઌͯ͠ݟ͍ͤͨ ⾣શମͰͷਓؾॱΑΓύʔιφϥΠζͨ͠ॱংΛఏڙ͍ͨ͠ ⾣αʔϏεݻ༗ͷׂΓࠐΈ͋Δ͔͠Εͳ͍ by Google
©2018 Wantedly, Inc. Recommendations with strategies
©2018 Wantedly, Inc. aggregator Strategy Strategy Strategy Strategy ༑ୡ͕-JLFͨ͠ΞΠςϜΛఏࣔ ߪೖཤྺ͔Βͷ͓͢͢Ί
ͷΞΠςϜ ϓϩϑΟʔϧ͔Βͷ͓͢͢Ί Recommendations with strategies Strategy Λ࣮ߦ ݁ՌΛू re-ordering ฒߦॲཧ
©2018 Wantedly, Inc. Recommendations with strategies ֤strategy͕ਪનΞΠςϜΛఏࣔ UZQF4USBUFHZJOUFSGBDF\ /BNF 4USBUFHZ/BNF
4VHHFTU DUYDPOUFYU$POUFYU VTFS*%JOU TJ[FJOU <> 4VHHFTU6TFS FSSPS ^ UZQF4VHHFTU6TFSTUSVDU\ 6TFS*%JOU 4DPSFqPBU 4USBUFHZ/BNF4USBUFHZ/BNF 3FBTPOJOUFSGBDF\^GPSMPHHJOH ^
©2018 Wantedly, Inc. Recommendations with strategies ͦΕΒΛฒߦʹ࣮ߦ͠ू ࠷ऴతͳॱংΛܾఆ͢Δ GPS@ TSBOHFTUSBUFHJFT\
XH"EE HPGVOD T4USBUFHZ \ EFGFSXH%POF TT FSST4VHHFTU DUY VTFS*% TJ[F JGFSSOJM\ SFQPSUFSSPS SFUVSO ^ NV-PDL TVHHFTUJPOTBQQFOE TVHHFTUJPOT TT NV6OMPDL ^ T ^
©2018 Wantedly, Inc. Why Go? Machine Learning ͱ Microservices ͳߏ
ˠ֤Strategy API CallΛؚΈ͏Δ ˠฒߦॲཧʹڧ͍͜ͱ͕׆͖Δ aggregator microservices
©2018 Wantedly, Inc. Responsibility of Aggregator ⾣Logging ⾣ ͲͷStrategy ͕Ͳͷ͘Β͍ՌΛ͍͋͛ͯΔ͔
⾣֤Strategy ͷείΞͷॏΈ͚ʹΑΔϥϯΩϯά ⾣e.g. ͢Ͱʹఏࣔͨ͜͠ͱͷ͋ΔΞΠςϜͷείΞΛݮਰͤ͞Δ ⾣A/B Testing
©2018 Wantedly, Inc. Problems… ⾣Frror reporting ⾣ ͋Δstrategy ͕ࢮΜͰ͍ͯશମࢭ·Βͳ͍Ͱ΄͍͠ ⾣ࢮΜͩ͜ͱʹؾ͖͍ͨ
⾣Frror reporting service Λ׆༻ ⾣ෳͷStrategy Ͱಉ͡API CallΛͨ͘͠ͳΔ ⾣e.g. Profile Service ʹॴଐΛ͍߹ΘͤΔ࠷ۙങͬͨͷΧςΰϦ͕Γ͍ͨ ⾣HPMBOHPSHYTZODTJOHMFqJHIU ΠϯϝϞϦΩϟογϡͰແཧཧଋͶΔ ⾣Ͳ͜·Ͱaggregator ͕ܭࢉ͢Δ͖͔
©2018 Wantedly, Inc. Conclusion ⾣ਪનγεςϜ͍ΖΜͳཁૉͷΈ߹Θͤ ⾣Microservices / Machine Learning ⾣A/B
Test ͕ॏཁ ⾣࣮ࡍʹԿΛݟ͔ͤͨɺԿ͕Action ʹͭͳ͕͔ͬͨLogging ͍ͨ͠ ⾣લஈʹGo Λ͓͘ͱศར ⾣Concurrent ʹ͍ΖΜͳStrategy Λ࣮ߦ͢Δͷ͕؆୯