Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Go as an aggregator in recommendation systems
Search
Agata Naomichi
July 26, 2018
Programming
2
1.3k
Go as an aggregator in recommendation systems
Agata Naomichi
July 26, 2018
Tweet
Share
More Decks by Agata Naomichi
See All by Agata Naomichi
医療系スタートアップが経験した 認知負荷問題の症状分析と処方箋 チーム分割による認知負荷の軽減 / Cognitive Load Busters
agatan
2
420
専門性の高い領域をいかに開発し、 テストするか / How to test and develop complicated systems with Domain Experts!
agatan
1
670
Henry のサーバーサイドアーキテクチャ 狙いと課題 2022.08.25 / Server-Side Architecture at Henry, Inc.
agatan
2
4.6k
The Web Conference 2020 - Participation Report
agatan
1
660
○○2vec 再考
agatan
1
4.2k
Improving "People You May Know" on Directed Social Graph
agatan
4
2.5k
Machine Learning and Feedback
agatan
1
1.4k
Recommendation systems on microservices - productivity & reproducibility
agatan
0
780
Mint: Language Level Support for SPAs
agatan
3
1.7k
Other Decks in Programming
See All in Programming
3rd party scriptでもReactを使いたい! Preact + Reactのハイブリッド開発
righttouch
PRO
1
600
Jakarta EE meets AI
ivargrimstad
0
160
Remix on Hono on Cloudflare Workers
yusukebe
1
290
Macとオーディオ再生 2024/11/02
yusukeito
0
370
Realtime API 入門
riofujimon
0
150
A Journey of Contribution and Collaboration in Open Source
ivargrimstad
0
910
【Kaigi on Rails 2024】YOUTRUST スポンサーLT
krpk1900
1
330
LLM生成文章の精度評価自動化とプロンプトチューニングの効率化について
layerx
PRO
2
190
ふかぼれ!CSSセレクターモジュール / Fukabore! CSS Selectors Module
petamoriken
0
150
WebフロントエンドにおけるGraphQL(あるいはバックエンドのAPI)との向き合い方 / #241106_plk_frontend
izumin5210
4
1.4k
watsonx.ai Dojo #4 生成AIを使ったアプリ開発、応用編
oniak3ibm
PRO
1
100
ピラミッド、アイスクリームコーン、SMURF: 自動テストの最適バランスを求めて / Pyramid Ice-Cream-Cone and SMURF
twada
PRO
10
1.3k
Featured
See All Featured
Designing the Hi-DPI Web
ddemaree
280
34k
Unsuck your backbone
ammeep
668
57k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
Building Adaptive Systems
keathley
38
2.3k
The Cost Of JavaScript in 2023
addyosmani
45
6.7k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
GitHub's CSS Performance
jonrohan
1030
460k
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Code Reviewing Like a Champion
maltzj
520
39k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Facilitating Awesome Meetings
lara
50
6.1k
Transcript
©2018 Wantedly, Inc. Go as an aggregator In Recommendation Systems
26.Jul.2018 - Naomichi Agata
©2018 Wantedly, Inc. agatan Software engineer at Wantedly, inc. Server
side + Machine learning Github Twitter @agatan @agatan_
©2018 Wantedly, Inc. Everything is a Recommendation https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Recommendations ΄ͱΜͲͷαʔϏεͰʮԿ͔Λਪન͢Δʯͱ͍͏ػೳ͋Δ
©2018 Wantedly, Inc. Impact of Recommendations ⾣Linkedinͷͭͳ͕Γͷ50%Ҏ্ʮΓ߹͍Ͱ͔͢ʁʯܦ༝ ⾣ https://engineering.linkedin.com/teams/data/projects/pymk ⾣NetflixਪનγεςϜͷcompetition
Λ։࠵ۚ͠$1 Million Λग़͍ͯ͠Δ ⾣ https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Components of Recommendations ਪનͷࠜڌ͍ΖΜͳॴʹ͋Δ ⾣ʮ˓˓͞Μ͕-JLF͠·ͨ͠ʯ ⾣ʮ͜ͷΛߪೖͨ͠ਓ͜ͷങ͍ͬͯ·͢ʯ ⾣ʮڞ௨ͷͭͳ͕Γ͕ਓ͍·͢ʯ
⾣ʮͷχϡʔεʯ ⾣ʮ˓˓Λݕࡧͨ͠ํʯ ⾣ʮಉ͡ձࣾͰಇ͍͍ͯΔϢʔβʯ
©2018 Wantedly, Inc. Order of Recommendations ΑΓྑ͍ΞΠςϜΛɺΑΓྑ͍ॱংͰఏࣔ͢Δ͜ͱ͕ٻΊΒΕΔ ⾣Hot Topics ͳΔ͘͘ఏ͍ࣔͨ͠
⾣֬ݻͨΔࣗ৴ͷ͋ΔਪનΛ༏ઌͯ͠ݟ͍ͤͨ ⾣શମͰͷਓؾॱΑΓύʔιφϥΠζͨ͠ॱংΛఏڙ͍ͨ͠ ⾣αʔϏεݻ༗ͷׂΓࠐΈ͋Δ͔͠Εͳ͍ by Google
©2018 Wantedly, Inc. Recommendations with strategies
©2018 Wantedly, Inc. aggregator Strategy Strategy Strategy Strategy ༑ୡ͕-JLFͨ͠ΞΠςϜΛఏࣔ ߪೖཤྺ͔Βͷ͓͢͢Ί
ͷΞΠςϜ ϓϩϑΟʔϧ͔Βͷ͓͢͢Ί Recommendations with strategies Strategy Λ࣮ߦ ݁ՌΛू re-ordering ฒߦॲཧ
©2018 Wantedly, Inc. Recommendations with strategies ֤strategy͕ਪનΞΠςϜΛఏࣔ UZQF4USBUFHZJOUFSGBDF\ /BNF 4USBUFHZ/BNF
4VHHFTU DUYDPOUFYU$POUFYU VTFS*%JOU TJ[FJOU <> 4VHHFTU6TFS FSSPS ^ UZQF4VHHFTU6TFSTUSVDU\ 6TFS*%JOU 4DPSFqPBU 4USBUFHZ/BNF4USBUFHZ/BNF 3FBTPOJOUFSGBDF\^GPSMPHHJOH ^
©2018 Wantedly, Inc. Recommendations with strategies ͦΕΒΛฒߦʹ࣮ߦ͠ू ࠷ऴతͳॱংΛܾఆ͢Δ GPS@ TSBOHFTUSBUFHJFT\
XH"EE HPGVOD T4USBUFHZ \ EFGFSXH%POF TT FSST4VHHFTU DUY VTFS*% TJ[F JGFSSOJM\ SFQPSUFSSPS SFUVSO ^ NV-PDL TVHHFTUJPOTBQQFOE TVHHFTUJPOT TT NV6OMPDL ^ T ^
©2018 Wantedly, Inc. Why Go? Machine Learning ͱ Microservices ͳߏ
ˠ֤Strategy API CallΛؚΈ͏Δ ˠฒߦॲཧʹڧ͍͜ͱ͕׆͖Δ aggregator microservices
©2018 Wantedly, Inc. Responsibility of Aggregator ⾣Logging ⾣ ͲͷStrategy ͕Ͳͷ͘Β͍ՌΛ͍͋͛ͯΔ͔
⾣֤Strategy ͷείΞͷॏΈ͚ʹΑΔϥϯΩϯά ⾣e.g. ͢Ͱʹఏࣔͨ͜͠ͱͷ͋ΔΞΠςϜͷείΞΛݮਰͤ͞Δ ⾣A/B Testing
©2018 Wantedly, Inc. Problems… ⾣Frror reporting ⾣ ͋Δstrategy ͕ࢮΜͰ͍ͯશମࢭ·Βͳ͍Ͱ΄͍͠ ⾣ࢮΜͩ͜ͱʹؾ͖͍ͨ
⾣Frror reporting service Λ׆༻ ⾣ෳͷStrategy Ͱಉ͡API CallΛͨ͘͠ͳΔ ⾣e.g. Profile Service ʹॴଐΛ͍߹ΘͤΔ࠷ۙങͬͨͷΧςΰϦ͕Γ͍ͨ ⾣HPMBOHPSHYTZODTJOHMFqJHIU ΠϯϝϞϦΩϟογϡͰແཧཧଋͶΔ ⾣Ͳ͜·Ͱaggregator ͕ܭࢉ͢Δ͖͔
©2018 Wantedly, Inc. Conclusion ⾣ਪનγεςϜ͍ΖΜͳཁૉͷΈ߹Θͤ ⾣Microservices / Machine Learning ⾣A/B
Test ͕ॏཁ ⾣࣮ࡍʹԿΛݟ͔ͤͨɺԿ͕Action ʹͭͳ͕͔ͬͨLogging ͍ͨ͠ ⾣લஈʹGo Λ͓͘ͱศར ⾣Concurrent ʹ͍ΖΜͳStrategy Λ࣮ߦ͢Δͷ͕؆୯