Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2019_G検定対策_数学講座02_行列とベクトル/20190125_JDLA_G_Math_2
Search
ITO Akihiro
January 25, 2019
Technology
0
11
2019_G検定対策_数学講座02_行列とベクトル/20190125_JDLA_G_Math_2
G検定対策社内数学講座
--
行列とベクトル
数学の基礎/線形代数
ITO Akihiro
January 25, 2019
Tweet
Share
More Decks by ITO Akihiro
See All by ITO Akihiro
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
580
【NoMapsTECH 2025】AI Tech Community Talk
akit37
0
270
エンジニア目線でのテスラ
akit37
0
54
「重鎮問題」について(軽めに)
akit37
0
69
Software + Hardware = Fun++
akit37
0
33
基本的に "リモートしかない" ワーク/20231128_KBS_LT
akit37
1
26
3つの先端技術が コミュニティ軸で融合した話。/20230615_CMCMeetup
akit37
0
20
Bootleg_越境してみたときのアウェイ感。/20230328_CMCMeetup
akit37
0
26
始まりは2017年のG検定。/20221026_AITable
akit37
0
22
Other Decks in Technology
See All in Technology
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
340
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
130
【AWS re:Invent 2025速報】AIビルダー向けアップデートをまとめて解説!
minorun365
4
480
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
180
乗りこなせAI駆動開発の波
eltociear
1
1k
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.2k
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
760
グレートファイアウォールを自宅に建てよう
ctes091x
0
140
【pmconf2025】PdMの「責任感」がチームを弱くする?「分業型」から全員がユーザー価値に本気で向き合う「共創型開発チーム」への変遷
toshimasa012345
0
280
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
190
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
BBQ
matthewcrist
89
9.9k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
94
The Pragmatic Product Professional
lauravandoore
37
7.1k
Faster Mobile Websites
deanohume
310
31k
Fireside Chat
paigeccino
41
3.7k
Designing for Performance
lara
610
69k
Typedesign – Prime Four
hannesfritz
42
2.9k
Producing Creativity
orderedlist
PRO
348
40k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Docker and Python
trallard
47
3.7k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Transcript
行列とベクトル 〜数学の基礎/線形代数〜 Jun. 2019 created by ITO Akihiro
線形/非線形 • 「線形に回帰する」とか • 関係を直線で表せる つまり、一次関数 比例と同じ 線形 非線形
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50 ※実際には、演算記号は書かない
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
a b c d x y ax + by cx + dy
a b c d e f g h x y z t ax + by + cz + dt ex + fy + gz + ht
• 計算できない場合もある • 左右どちらからかけるかに よって結果が異なる • 「行列の積」と 「行列の内積」は別モノ • 行列の内積
同じサイズの行列A,Bの、対 応する成分の積のすべての 和 a b c d a b c d e f x y z r s t u v w x y z ⭕ 計算できる ❌ 計算できない 2×3行列 3×1行列 2×2行列 3×3行列
単位行列 E • 積の結果が元と同じ (x1と同じ) • 左右どちらからかけても同じ 1 0 0 1 1 0 0 0 1 0
0 0 1 n = 2のとき n = 3のとき En = 1 0 ‥ 0 0 0 1 ‥ 0 0 :: :: 0 0 ‥ 1 0 0 0 ‥ 0 1 1 2 3 4 1 0 0 1 1 2 3 4 例
行列 に対して逆行列 は、 逆行列 Inverse 2 5 1 3 の逆行列は 3 -5 -1 2 2 5 1 3 3 -5
-1 2 1 0 0 1 例 • 積の結果が単位行列 • 左右どちらからかけても同じ
転置行列 Transpose • 行と列を入れ替える • 裏返すイメージ A = x y z x y z
A = T a b c d B = a c b d B = T 1 2 3 4 5 6 1 4 2 5 3 6 A = A = t 例
y x ベクトルは、大きさ+向き(スカラーは、大きさ) 分解 x成分 y成分 A B 大きさ 向き
始点 終点 A B
ベクトルの足し算 平行四辺形を作ればOK y x 0 (1, 2) (3, 1) (3+1,
1+2) a b a+b y x 0 (3, 1) (4, 3) a b a+b
三次元の場合 y x z P (x, y) (x, y, z)
“単語をベクトル空間にマッピングして……” man woman king queen cat lion dog cow horse
car truck bike bicycle plane ship camra mic TV projector
a.k.a. “word2vec” man king woman queen Tokyo Japan Paris France
London GreatBritain Capital Greeting Country こんにちは Bonjour Hello word2vec = word to vector
word2vec での足し算/引き算 man king woman queen Tokyo Japan Paris France
Capital Greeting Country こんにちは Bonjour “Japan” - “France” + “Greeting” = “Bonjour” θ a b ※コサイン類似度 cosθ が1に近ければ、 aとbは似ている a b b’ θ cosθ = b’/a