Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2019_G検定対策_数学講座02_行列とベクトル/20190125_JDLA_G_Math_2
Search
ITO Akihiro
January 25, 2019
Technology
0
8
2019_G検定対策_数学講座02_行列とベクトル/20190125_JDLA_G_Math_2
G検定対策社内数学講座
--
行列とベクトル
数学の基礎/線形代数
ITO Akihiro
January 25, 2019
Tweet
Share
More Decks by ITO Akihiro
See All by ITO Akihiro
「重鎮問題」について(軽めに)
akit37
0
48
Software + Hardware = Fun++
akit37
0
23
基本的に "リモートしかない" ワーク/20231128_KBS_LT
akit37
1
20
3つの先端技術が コミュニティ軸で融合した話。/20230615_CMCMeetup
akit37
0
18
Bootleg_越境してみたときのアウェイ感。/20230328_CMCMeetup
akit37
0
23
始まりは2017年のG検定。/20221026_AITable
akit37
0
14
kintone知能化計画/20220902_kintone_and_JPStripes
akit37
0
24
外観検査用画像前処理の_コツをコード解説付きで。/20220810_CDLE_LT
akit37
0
15
サブスク課金に銀行振込を追加してみた。その①/20220713_JPStripes
akit37
0
20
Other Decks in Technology
See All in Technology
サーバシステムを無理なくコンテナ移行する際に伝えたい4つのポイント/Container_Happy_Migration_Method
ozawa
1
100
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
440
一人QA時代が終わり、 QAチームが立ち上がった話
ma_cho29
0
290
3/26 クラウド食堂LT #2 GenU案件を通して学んだ教訓 登壇資料
ymae
1
200
Tirez profit de Messenger pour améliorer votre architecture
tucksaun
1
140
モノリスの認知負荷に立ち向かう、コードの所有者という思想と現実
kzkmaeda
0
110
新卒エンジニア研修の試行錯誤と工夫/nikkei-tech-talk-31
nishiuma
0
200
17年のQA経験が導いたスクラムマスターへの道 / 17 Years in QA to Scrum Master
toma_sm
0
400
Compose MultiplatformにおけるiOSネイティブ実装のベストプラクティス
enomotok
1
210
コンソールで学ぶ!AWS CodePipelineの機能とオプション
umekou
2
110
SpannerとAurora DSQLの同時実行制御の違いに想いを馳せる
masakikato5
0
570
ひまプロプレゼンツ 「エンジニア格付けチェック 〜春の公開収録スペシャル〜」
kaaaichi
0
140
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
25k
Practical Orchestrator
shlominoach
187
10k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Agile that works and the tools we love
rasmusluckow
328
21k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Being A Developer After 40
akosma
90
590k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
118
51k
4 Signs Your Business is Dying
shpigford
183
22k
Building a Modern Day E-commerce SEO Strategy
aleyda
39
7.2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
7
620
Transcript
行列とベクトル 〜数学の基礎/線形代数〜 Jun. 2019 created by ITO Akihiro
線形/非線形 • 「線形に回帰する」とか • 関係を直線で表せる つまり、一次関数 比例と同じ 線形 非線形
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50 ※実際には、演算記号は書かない
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
a b c d x y ax + by cx + dy
a b c d e f g h x y z t ax + by + cz + dt ex + fy + gz + ht
• 計算できない場合もある • 左右どちらからかけるかに よって結果が異なる • 「行列の積」と 「行列の内積」は別モノ • 行列の内積
同じサイズの行列A,Bの、対 応する成分の積のすべての 和 a b c d a b c d e f x y z r s t u v w x y z ⭕ 計算できる ❌ 計算できない 2×3行列 3×1行列 2×2行列 3×3行列
単位行列 E • 積の結果が元と同じ (x1と同じ) • 左右どちらからかけても同じ 1 0 0 1 1 0 0 0 1 0
0 0 1 n = 2のとき n = 3のとき En = 1 0 ‥ 0 0 0 1 ‥ 0 0 :: :: 0 0 ‥ 1 0 0 0 ‥ 0 1 1 2 3 4 1 0 0 1 1 2 3 4 例
行列 に対して逆行列 は、 逆行列 Inverse 2 5 1 3 の逆行列は 3 -5 -1 2 2 5 1 3 3 -5
-1 2 1 0 0 1 例 • 積の結果が単位行列 • 左右どちらからかけても同じ
転置行列 Transpose • 行と列を入れ替える • 裏返すイメージ A = x y z x y z
A = T a b c d B = a c b d B = T 1 2 3 4 5 6 1 4 2 5 3 6 A = A = t 例
y x ベクトルは、大きさ+向き(スカラーは、大きさ) 分解 x成分 y成分 A B 大きさ 向き
始点 終点 A B
ベクトルの足し算 平行四辺形を作ればOK y x 0 (1, 2) (3, 1) (3+1,
1+2) a b a+b y x 0 (3, 1) (4, 3) a b a+b
三次元の場合 y x z P (x, y) (x, y, z)
“単語をベクトル空間にマッピングして……” man woman king queen cat lion dog cow horse
car truck bike bicycle plane ship camra mic TV projector
a.k.a. “word2vec” man king woman queen Tokyo Japan Paris France
London GreatBritain Capital Greeting Country こんにちは Bonjour Hello word2vec = word to vector
word2vec での足し算/引き算 man king woman queen Tokyo Japan Paris France
Capital Greeting Country こんにちは Bonjour “Japan” - “France” + “Greeting” = “Bonjour” θ a b ※コサイン類似度 cosθ が1に近ければ、 aとbは似ている a b b’ θ cosθ = b’/a