= identify and quantify molecules and quantify molecules •human genome 3,000,000,000 bases g , , , •proteomics > 100,000 different proteins •metabolomics > 10,000,000 different . small molecules •target: single cell analysis (femtoliter)
= identify and quantify molecules and quantify molecules largest impact in near future: stem cells, g p , cryobiological librairies, tissue engineering, organ engineering completely new medicine organ engineering, completely new medicine
= identify and quantify molecules and quantify molecules example: cell culture p 99% of protein mass is < 20 proteins 1% is the remaining 100 000 1% is the remaining 100,000 difficult
[example 1] [example 1] • Electrophoresis chips - Caliper Electrophoresis chips Caliper, Agilent, Hitachi, Shimadzu etc. i l d f A f • mainly used for DNA fragment sizing • protein separations bi • bioassays
n i t s ] 1 2 3 4 c y c l e # t 7 s s y n c h r . c e [ a r b . u n i t s ] 1 2 3 4 c y c l e # t 7 s s y n c h r . c e [ a r b . u n i t s ] 1 2 3 4 c y c l e # t 7 s s y n c h r . f l u o r e s c e n 0 4 0 8 0 1 2 0 1 6 0 5 6 7 8 f l u o r e s c e n 0 4 0 8 0 1 2 0 1 6 0 5 6 7 8 f l u o r e s c e n 0 4 0 8 0 1 2 0 1 6 0 5 6 7 8
[example 2] [example 2] • Reactor chips - Upchurch, Ehrfeld etc. etc. • Mainly used for solvent di t i h t h gradients in chromatography • Chemical synthesis y • Bioassays
1 second to decision • no complicated surface chemistry • no complicated surface chemistry • sensitivity 100-200nM sensitivity 100 200nM • could be competing with DNA arrays
channels • 72 x 20 um outlet channels h id 108 4 h l • each side 108 x 4 um channels • separation bed 12.2 x 4.1 mm p – 15,552 posts 30 x 30 um – 30 x 30 um
. u n i t s ] 1 2 3 4 c y c l e # t 7 s s y n c h r . c e [ a r b . u n i t s ] 1 2 3 4 c y c l e # t 7 s s y n c h r . c e [ a r b . u n i t s ] 1 2 3 4 c y c l e # t 7 s s y n c h r . f l u o r e s c e n 0 4 0 8 0 1 2 0 1 6 0 5 6 7 8 f l u o r e s c e n 0 4 0 8 0 1 2 0 1 6 0 5 6 7 8 f l u o r e s c e n 0 4 0 8 0 1 2 0 1 6 0 5 6 7 8 CE
of protein molecule depends on pH g p p p • low pH (acidic): protein is cation hi h H (b i ) t i i i • high pH (basic): protein is anion • generate a pH gradient across electric field g p g – ions move until overall charge is zero isoelectric point is different for each protein – isoelectric point is different for each protein
He He H He 3500 4000 Cl 2500 3000 n s ity (A U ) 2000 is s io n In te n CCl C/C2 1000 1500 Em 0 500 C2 0 200 300 400 500 600 700 800 900 Wavelength (nm)
Chem. 71, 2600-2606 (1999) d i li i 2 10 14 / C • detection limit 2·10-14 g/s C 4 U. 104 ound / A. 1000 us backgro 100 nsity minu sion inten 3*Noise 10 1 10 100 1000 emiss CH 4 concentration / ppm
l i i h shorter timescales, micro is enough • Detection schemes usually suffer, but to y different extents, nano is quite difficult • Integration / small volumes advantageous, Integration / small volumes advantageous, below 1 nL doesn’t matter • More commercial products in near future • More commercial products in near future, but micro scale
Joachim Franzke Norbert Jakubowski Jan Eijkel Gareth Jenkins Norbert Jakubowski Philip Day Yi Xu Chao-Xuan Zhang Valerie Spikmans Martin Heule Jörg Baumbach Volker Deckert g Michael Mitchell Fi B h Dirk Janasek L C b ll Roland Hergenröder N b E Fiona Bessoth Lucy Campbell Norbert Esser Kay Niemax, Prof.