Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自律機械知能の行動観察
Search
ぶんちん
December 14, 2023
Science
0
160
自律機械知能の行動観察
ぶんちん
December 14, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
個人計画とプロジェクト遂行の考え方
bunnchinn3
0
27
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
72
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
64
統計知識と実務のギャップ
bunnchinn3
0
83
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
89
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
80
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
91
製造業における品質不良の要因分析02_分析着手順の考え方
bunnchinn3
0
97
製造業における品質不良の要因分析01_ゴール設定
bunnchinn3
0
140
Other Decks in Science
See All in Science
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
670
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
130
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
440
LIMEを用いた判断根拠の可視化
kentaitakura
0
500
butterfly_effect/butterfly_effect_in-house
florets1
1
160
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
290
サイゼミ用因果推論
lw
1
6.5k
データベース02: データベースの概念
trycycle
PRO
1
660
CV_3_Keypoints
hachama
0
130
創薬における機械学習技術について
kanojikajino
16
5.1k
Planted Clique Conjectures are Equivalent
nobushimi
0
140
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
260
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
35
2.6k
Facilitating Awesome Meetings
lara
54
6.3k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Optimizing for Happiness
mojombo
377
70k
Git: the NoSQL Database
bkeepers
PRO
430
65k
For a Future-Friendly Web
brad_frost
176
9.7k
GraphQLの誤解/rethinking-graphql
sonatard
71
10k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
9
750
How to train your dragon (web standard)
notwaldorf
90
6k
A better future with KSS
kneath
239
17k
Transcript
“なんもわからん”から始める実験の設計 自律機械知能の行動観察 最初の一歩 ぶんちん 2023年12月14日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
バーチャル学会2023に参加 3
私が途中参加したときの状況 4 中心部分はすでに完成 どんな振る舞いをするか 体系的な知見がない どうしたらAMIの面白さを 共有できるかわからない 調査方法に課題
まずは達成目標の定義 前提条件 実験時間・回数に制約あり YAIBAを用いた行動記録が使用可能 目標 学習がおこなわれていることをわかりやすく示す
AMIの行動に時間的な変化が生じること 周囲の環境から影響を受けること 5 前提条件に基づいて 検証可能な目標を立てる このプロセスが成果獲得に超重要!
時間的な変化を検証する環境 AMIに学習を進めさせ、周りの環境に飽きることを観測すればOKなはず 極力特徴のないシンプルなワールド できるだけ実験回数を増やすことができる環境 小さいサイズのワールド(当初計画の数分の1サイズ 6
初期の実験ワールド 発表に使用した実験ワールド
外部からの影響有無を検証する環境 共通点を持ちつつも、環境から得られる情報が明確に異なる環境 同じ形状で、同じ行動が可能である 外部から得られる情報が異なる 7 実験用ワールド シンプルな環境
壁の違いやランダム画像表示のある環境
実験結果 8 複数回実験し、様々なパターンがあるものの学習していることを示せた シンプルな環境 壁の違いやランダム画像表示のある環境
得られた結果と今後の展開 学習が進んでいることを示せた 時間経過による変化を示せた 外部からの情報により変化が生じることを示せた 一方で課題も見つかった 事実上、立ち止まることができない(対応済み) 動かすPCによって実験時間(行動&学習時間)が異なる
今後も様々な検討を予定 9