Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自律機械知能の行動観察
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
ぶんちん
December 14, 2023
Science
0
210
自律機械知能の行動観察
ぶんちん
December 14, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
LTのはじめかた(VRChat技術系界隈を想定)
bunnchinn3
0
60
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
110
“成果”を出すためのプレゼン準備 プレゼン資料作成の前にやること
bunnchinn3
1
200
良書紹介03_ データ分析読解の技術
bunnchinn3
0
68
MVP未満からの成果獲得
bunnchinn3
0
66
個人計画とプロジェクト遂行の考え方
bunnchinn3
0
91
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
110
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
91
統計知識と実務のギャップ
bunnchinn3
0
140
Other Decks in Science
See All in Science
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
470
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
140
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
140
高校生就活へのDA導入の提案
shunyanoda
1
6.2k
2025-06-11-ai_belgium
sofievl
1
220
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
MCMCのR-hatは分散分析である
moricup
0
580
学術講演会中央大学学員会府中支部
tagtag
PRO
0
340
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
260
(2025) Balade en cyclotomie
mansuy
0
440
Lean4による汎化誤差評価の形式化
milano0017
1
420
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
160
Joys of Absence: A Defence of Solitary Play
codingconduct
1
280
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
270
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
RailsConf 2023
tenderlove
30
1.3k
Site-Speed That Sticks
csswizardry
13
1.1k
Claude Code のすすめ
schroneko
67
210k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
630
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Odyssey Design
rkendrick25
PRO
1
490
Transcript
“なんもわからん”から始める実験の設計 自律機械知能の行動観察 最初の一歩 ぶんちん 2023年12月14日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
バーチャル学会2023に参加 3
私が途中参加したときの状況 4 中心部分はすでに完成 どんな振る舞いをするか 体系的な知見がない どうしたらAMIの面白さを 共有できるかわからない 調査方法に課題
まずは達成目標の定義 前提条件 実験時間・回数に制約あり YAIBAを用いた行動記録が使用可能 目標 学習がおこなわれていることをわかりやすく示す
AMIの行動に時間的な変化が生じること 周囲の環境から影響を受けること 5 前提条件に基づいて 検証可能な目標を立てる このプロセスが成果獲得に超重要!
時間的な変化を検証する環境 AMIに学習を進めさせ、周りの環境に飽きることを観測すればOKなはず 極力特徴のないシンプルなワールド できるだけ実験回数を増やすことができる環境 小さいサイズのワールド(当初計画の数分の1サイズ 6
初期の実験ワールド 発表に使用した実験ワールド
外部からの影響有無を検証する環境 共通点を持ちつつも、環境から得られる情報が明確に異なる環境 同じ形状で、同じ行動が可能である 外部から得られる情報が異なる 7 実験用ワールド シンプルな環境
壁の違いやランダム画像表示のある環境
実験結果 8 複数回実験し、様々なパターンがあるものの学習していることを示せた シンプルな環境 壁の違いやランダム画像表示のある環境
得られた結果と今後の展開 学習が進んでいることを示せた 時間経過による変化を示せた 外部からの情報により変化が生じることを示せた 一方で課題も見つかった 事実上、立ち止まることができない(対応済み) 動かすPCによって実験時間(行動&学習時間)が異なる
今後も様々な検討を予定 9