Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自律機械知能の行動観察
Search
ぶんちん
December 14, 2023
Science
0
150
自律機械知能の行動観察
ぶんちん
December 14, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
64
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
58
統計知識と実務のギャップ
bunnchinn3
0
70
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
69
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
74
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
77
製造業における品質不良の要因分析02_分析着手順の考え方
bunnchinn3
0
75
製造業における品質不良の要因分析01_ゴール設定
bunnchinn3
0
120
良書紹介02_Head First データ解析
bunnchinn3
0
69
Other Decks in Science
See All in Science
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
170
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
120
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
610
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
1.2k
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
150
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
160
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
410
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
3
690
How were Quaternion discovered
kinakomoti321
2
1.2k
butterfly_effect/butterfly_effect_in-house
florets1
1
150
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
150
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
400
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Rails Girls Zürich Keynote
gr2m
94
13k
Speed Design
sergeychernyshev
27
810
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Music & Morning Musume
bryan
46
6.4k
Transcript
“なんもわからん”から始める実験の設計 自律機械知能の行動観察 最初の一歩 ぶんちん 2023年12月14日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
バーチャル学会2023に参加 3
私が途中参加したときの状況 4 中心部分はすでに完成 どんな振る舞いをするか 体系的な知見がない どうしたらAMIの面白さを 共有できるかわからない 調査方法に課題
まずは達成目標の定義 前提条件 実験時間・回数に制約あり YAIBAを用いた行動記録が使用可能 目標 学習がおこなわれていることをわかりやすく示す
AMIの行動に時間的な変化が生じること 周囲の環境から影響を受けること 5 前提条件に基づいて 検証可能な目標を立てる このプロセスが成果獲得に超重要!
時間的な変化を検証する環境 AMIに学習を進めさせ、周りの環境に飽きることを観測すればOKなはず 極力特徴のないシンプルなワールド できるだけ実験回数を増やすことができる環境 小さいサイズのワールド(当初計画の数分の1サイズ 6
初期の実験ワールド 発表に使用した実験ワールド
外部からの影響有無を検証する環境 共通点を持ちつつも、環境から得られる情報が明確に異なる環境 同じ形状で、同じ行動が可能である 外部から得られる情報が異なる 7 実験用ワールド シンプルな環境
壁の違いやランダム画像表示のある環境
実験結果 8 複数回実験し、様々なパターンがあるものの学習していることを示せた シンプルな環境 壁の違いやランダム画像表示のある環境
得られた結果と今後の展開 学習が進んでいることを示せた 時間経過による変化を示せた 外部からの情報により変化が生じることを示せた 一方で課題も見つかった 事実上、立ち止まることができない(対応済み) 動かすPCによって実験時間(行動&学習時間)が異なる
今後も様々な検討を予定 9