Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自律機械知能の行動観察
Search
ぶんちん
December 14, 2023
Science
0
210
自律機械知能の行動観察
ぶんちん
December 14, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
LTのはじめかた(VRChat技術系界隈を想定)
bunnchinn3
0
50
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
110
“成果”を出すためのプレゼン準備 プレゼン資料作成の前にやること
bunnchinn3
1
190
良書紹介03_ データ分析読解の技術
bunnchinn3
0
58
MVP未満からの成果獲得
bunnchinn3
0
60
個人計画とプロジェクト遂行の考え方
bunnchinn3
0
78
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
99
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
85
統計知識と実務のギャップ
bunnchinn3
0
130
Other Decks in Science
See All in Science
データマイニング - ウェブとグラフ
trycycle
PRO
0
220
データマイニング - ノードの中心性
trycycle
PRO
0
320
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
22k
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
290
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
知能とはなにかーヒトとAIのあいだー
tagtag
0
130
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
470
NDCG is NOT All I Need
statditto
2
2.6k
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
450
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.2k
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
420
Featured
See All Featured
Test your architecture with Archunit
thirion
1
2.1k
WCS-LA-2024
lcolladotor
0
390
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
We Have a Design System, Now What?
morganepeng
54
7.9k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
170
We Are The Robots
honzajavorek
0
120
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
90
Balancing Empowerment & Direction
lara
5
820
How to Ace a Technical Interview
jacobian
281
24k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Transcript
“なんもわからん”から始める実験の設計 自律機械知能の行動観察 最初の一歩 ぶんちん 2023年12月14日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
バーチャル学会2023に参加 3
私が途中参加したときの状況 4 中心部分はすでに完成 どんな振る舞いをするか 体系的な知見がない どうしたらAMIの面白さを 共有できるかわからない 調査方法に課題
まずは達成目標の定義 前提条件 実験時間・回数に制約あり YAIBAを用いた行動記録が使用可能 目標 学習がおこなわれていることをわかりやすく示す
AMIの行動に時間的な変化が生じること 周囲の環境から影響を受けること 5 前提条件に基づいて 検証可能な目標を立てる このプロセスが成果獲得に超重要!
時間的な変化を検証する環境 AMIに学習を進めさせ、周りの環境に飽きることを観測すればOKなはず 極力特徴のないシンプルなワールド できるだけ実験回数を増やすことができる環境 小さいサイズのワールド(当初計画の数分の1サイズ 6
初期の実験ワールド 発表に使用した実験ワールド
外部からの影響有無を検証する環境 共通点を持ちつつも、環境から得られる情報が明確に異なる環境 同じ形状で、同じ行動が可能である 外部から得られる情報が異なる 7 実験用ワールド シンプルな環境
壁の違いやランダム画像表示のある環境
実験結果 8 複数回実験し、様々なパターンがあるものの学習していることを示せた シンプルな環境 壁の違いやランダム画像表示のある環境
得られた結果と今後の展開 学習が進んでいることを示せた 時間経過による変化を示せた 外部からの情報により変化が生じることを示せた 一方で課題も見つかった 事実上、立ち止まることができない(対応済み) 動かすPCによって実験時間(行動&学習時間)が異なる
今後も様々な検討を予定 9