Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Functional Go

Functional Go

In this talk I discuss whether applying some of the principles of programming language to Go is possible or makes sense.

Can we build the Maybe and Many monads in Go? Well, yes!
Is it a good idea? Well, probably not

Presented at http://dotgo.eu 2015 in Paris

Francesc Campoy Flores

November 09, 2015
Tweet

More Decks by Francesc Campoy Flores

Other Decks in Programming

Transcript

  1. quicksort [] = [] quicksort (x:xs) = let smaller =

    quicksort [a | a <- xs, a <= x] bigger = quicksort [a | a <- xs, a > x] in smaller ++ [x] ++ bigger Quicksort in Haskell
  2. func SumI(vs []int) int { s := 0 for _,

    v := range vs { s += v } return v } Iterative sum
  3. func SumI(vs []int) int { s := 0 for _,

    v := range vs { s += v } return v } Iterative fun is not functional
  4. func SumR(vs []int) int { if len(vs) == 0 {

    return 0 } return vs[0] + Sum(vs[1:]) } Recursive sum
  5. func SumTR(vs []int, s int) int { if len(vs) ==

    0 { return s } return Sum(vs[1:], s + vs[0]) } Tail recursion
  6. func SumTRG(vs []int, s int) int { begin: if len(vs)

    == 0 { return s } vs, s = vs[1:], s + vs[0] goto begin } Tail recursion with faked optimization
  7. PASS BenchmarkSumI-4 3000000 462 ns/op BenchmarkSumR-4 300000 4707 ns/op BenchmarkSumTR-4

    300000 5056 ns/op BenchmarkSumTRG-4 1000000 1587 ns/op Is it fast?
  8. Functions are first class objects - as parameters - as

    returned values - in Go they can be used anywhere!
  9. func Map(f func(v int) bool, vs []int) []bool { if

    len(vs) == 0 { return nil } return append( []bool{f(vs[0])}, Map(f, vs[1:])...) } Map on concrete types
  10. func Map(f func(v int) bool, vs []int) []bool { if

    len(vs) == 0 { return nil } return append( Map(f, vs[:len(vs)-1]), vs[len(vs)-1]) } Map on concrete types (reversed order)
  11. func main() { isEven := func(v int) bool { return

    v%2 == 0 } nums := []int{1, 2, 3, 4, 5, 6} fmt.Println(Map(isEven, nums)) // [false true false true false true] } Map on concrete types
  12. Representing functions type Func struct { in reflect.Type out reflect.Type

    f func(interface{}) interface{} } func (f Func) Call(v interface{}) interface{} { return f.f(v) }
  13. func NewFunc(f interface{}) (*Func, error) { // check type of

    f and return an error if needed return &Func{ in: tf.In(0), out: tf.Out(0), f: func(x interface{}) interface{} { out := vf.Call([]reflect.Value{reflect.ValueOf(x)}) return out[0].Interface() }, }, nil } Representing functions: NewFunc
  14. func Must(f *Func, err error) *Func { if err !=

    nil { panic(err) } return f } Representing functions: Must
  15. type List struct { Head interface{} Tail *List } func

    Map(f *Func, l *List) *List { if l == nil { return nil } return &List{f.Call(l.Head), Map(f, l.Tail)} } A simple List
  16. func (l *List) Map(f *Func) *List { if l ==

    nil { return nil } return &List{ f.Call(l.Head), Map(f, l.Tail), } } Map in Go, as a method of List
  17. toUpper := Must(NewFunc(strings.ToUpper)) m := &List{“hello”, &List{“bye”, nil}} res :=

    m.Map(toUpper) fmt.Println(res) // “HELLO”, “BYE” Using map
  18. The Eq typeclass class Eq a where (==) :: a

    -> a -> Bool (/=) :: a -> a -> Bool
  19. type Equatable interface { Equals(e Equatable) bool } satisfied by

    an Integer type func (i Integer) Equals(j Integer) bool The Equatable interface
  20. class Functor f a where fmap :: (a -> b)

    -> f a -> f b Functor typeclass
  21. type Maybe struct { Value interface{} } func (m Maybe)

    Map(f *Func) Maybe { if m.Value == nil { return Maybe{} } return Maybe{ f.Call(m.Value) } } Maybe
  22. Once we create a Func: toUpper := Must(NewFunc(strings.ToUpper)) We can

    call it with a value: m := Maybe{“hello”} res := m.Map(toUpper) fmt.Println(res.Value) // “HELLO” Maybe
  23. Once we create a Func: toUpper := Must(NewFunc(strings.ToUpper)) Or without

    it: m := Maybe{} res := m.Map(toUpper) fmt.Println(res.Value) // <nil> Maybe
  24. toUpper := Must(NewFunc(strings.ToUpper)) twice := Must(NewFunc(func(s string) string { return

    s+s })) m := Maybe{“hello”} res := m.Map(toUpper).Map(twice) fmt.Println(res.Value) // “HELLOHELLO” Maybe chained
  25. type Person struct{ address *Address } type Address struct{ city

    *City } type City struct{ weather *Weather } type Weather struct{ desc string } func (p Person) Address() *Address { return p.address } func (a Address) City() *City { return a.city } func (c City) Weather() *Weather { return c.weather } func (w Weather) Desc() string { return w.desc } An actual use case
  26. func (p Person) Weather() string { a := p.Address() if

    a == nil { return “no weather” } c := a.City() if c == nil { return “no weather” } w := c.Weather() if w == nil { return “no weather” } return w.Description() } An actual use case
  27. func (p Person) Weather() string { m := Maybe{p}. Map(Must(NewFunc(func(p

    Person) *Address { return p.address }))). Map(Must(NewFunc(func(a Address) *City { return a.city }))). ... Maybe chained
  28. We can obtain a function from a value: var p

    Person p.Address // func() *Address Or from a type Person.Address // func(Person) *Address Method values
  29. func (p Person) Weather() string { w := Maybe{p}. Map(Must(NewFunc(Person.Address))).

    Map(Must(NewFunc(Address.City))). Map(Must(NewFunc(City.Weather))). Map(Must(NewFunc(Weather.Description))) if w.Value == nil { return “no weather” } return w.Value.(string) } Maybe chained
  30. func (m Maybe) Do(fs ...interface{}) (Maybe, error) { if len(fs)

    == 0 { return m, nil } f, err := NewFunc(fs[0]) if err != nil { return Maybe{}, err } return m.Map(f).Do(fs[1:]...) } Chaining map with Maybe.Do
  31. func (p Person) Weather() string { w := Maybe{p}.Do( Person.Address,

    Address.City, City.Weather, Weather.Description) if w.Value == nil { return “no weather” } return w.Value.(string) } Chaining map with Maybe.Do
  32. func (m *Many) Map(f *Func) *Many { if m ==

    nil { return nil } res := m.Tail.Map(f) // append all elements from the result for _, v := range toSlice(f.Call(m.Head)) { r = &Many{v, res} } return res } Many
  33. Once we create a Func: toUpper := Must(NewFunc(strings.ToUpper)) We can

    call it with a value: m := Many{“hello there”, “good bye”} res := m.Map(toUpper) fmt.Println(res.Value) // “HELLO THERE”, “GOOD BYE” Many
  34. If we have a new function: toUpper := Must(NewFunc(strings.ToUpper)) fields

    := Must(NewFunc(strings.Fields)) Or without it: m := Many{“hello there”, “good bye”} res := m.Map(toUpper).Map(fields) fmt.Println(res.Value) // “HELLO”, “THERE”, “GOOD”, “BYE” Many chained
  35. type Library struct{ books []Book } type Book struct{ pages

    []Page } type Page struct{ lines []Line } type Line struct{ text string } func (l Library) Books() []Book { return l.books } func (b Book) Pages() []Page { return b.pages } func (p Page) Lines() []Line { return p.lines } func (l Line) Text() string { return l.text } An actual use case
  36. An actual use case words := make(map[string]int) for _, b

    := range l.Books() { for _, p := range b.Pages() { for _, l := range p.Lines() { for _, word := range strings.Fields(l.Text()) { words[word]++ } } } }
  37. Many Do _, err := NewMany(m).Do( Library.Books, Book.Pages, Page.Lines, Line.Text,

    strings.Field, func(s string) bool { count[s]++; return true }) if err != nil { // type error }
  38. Many Do w, err := NewMany(m). Do( Library.Books, Book.Pages, Page.Lines,

    Line.Text, strings.Field) if err != nil { // type error } w.Each(func(s string) { count[s]++ })
  39. Functional Go - Doable - but slower than normal code

    - requires reflection - Inspiration for good APIs - functors to abstract function application - what could we do with monads?
  40. Composition of functions func Compose(f, g *Func) (*Func, error) {

    if g.out != f.in { return nil, fmt.Errorf("can't compose: %v != %v", g.out, f.in) } return &Func{ g.in, f.out, func(x interface{}) interface{} { return f.Call(g.Call(x)) }, }, nil }
  41. func (m Maybe) Map(f *Func) Maybe { if m.Value ==

    nil { return Maybe{} } r := f.Call(m.Value) vr := reflect.ValueOf(r) if vr.Kind() == reflect.Ptr && vr.IsNil() { return Maybe{} } return Maybe{r} } Mapping over a Maybe and handling nil pointers