Upgrade to Pro — share decks privately, control downloads, hide ads and more …

CVPR2021読み会スライド

 CVPR2021読み会スライド

第7回全日本コンピュータビジョン勉強会での輪読会資料です。
・NeRF
・NeRF in the Wild
・GIRAFFE
の3つについて紹介しています。

Avatar for Daigo HIROOKA

Daigo HIROOKA

July 31, 2021
Tweet

More Decks by Daigo HIROOKA

Other Decks in Research

Transcript

  1. 自己紹介 • 廣岡大吾 ◦ Twitter:dhirooka (@daigo_hirooka) • 機械学習エンジニア@ BrainPad ◦

    関心:Deep LearningとMLOps • その他 ◦ GoProがタンスで眠っています ◦ 白金鉱業.FM (@shirokane_fm) Podcastで配信中! 2
  2. 紹介論文:NeRF in the Wild, GIRAFFE • NeRFの勉強として ◦ NeRF Explosion

    2020 • デモが面白い ◦ NeRF in the Wild ◦ GIRAFFE 3 NeRF in the Wild
  3. NeRF:構成要素③:ボリュームレンダリング • ボリュームレンダリングによるピクセル値の計算 ◦ Camera ray上の色c・密度σの積分 ◦ 実装上は数値積分によって計算 13 Camera

    ray rに対応する ピクセル値 点iより手前の透過 点iの不透明度 密度σ大で1に近づく 点iの色 点iの3D座標 N等分した各区間から uniform sampling
  4. NeRF:学習 • シーンの全画像から複数の camera ray(=ピクセル)をミニバッチとしてサンプリング ◦ 各camera ray上で評価点をサンプリング ◦ 各評価点をRadiance

    Fieldに入力して、色・密度を得る ◦ ボリュームレンダリングによってピクセル値を得る • ピクセル値の二乗誤差で学習 14
  5. NeRF:実装上の工夫②:Hierarchical Sampling • N等分区間からの一様サンプリングは無駄が多い ◦ 何もない位置 ◦ 視点奥の直接見えない位置 • Hierarchical

    Sampling ◦ まずN等分区間から評価点の一様サンプリングを行う ◦ 各評価点の密度に基づいて、再度サンプリングを行う ◦ ピクセル描画に重要な領域にフォーカスする 17 視点手前の物体を重視 何もない 直接 見えない
  6. NeRF:実装上の工夫②:Hierarchical Sampling • Coarse, Fineの2モデルを用意する • Hierarchical Samplingを用いた推論 ◦ 等分区間からNc個の評価点をサンプリング

    ◦ Coarseモデル:Nc個の評価点の色・密度を計算 ◦ 区間を重み付けして再度 Nf個の評価点をサンプリング ◦ Fineモデル:Nc+Nf個の評価点の色・密度を計算 • Hierarchical Samplingを用いた学習 ◦ Coarse, Fineモデルそれぞれで ピクセル値の二乗誤差を学習 18 Coarseモデルの 二乗誤差 Fineモデルの 二乗誤差
  7. NeRF:まとめ • アーキテクチャ ◦ Radiance Field:位置・角度→色・密度の関数 ◦ ボリュームレンダリングによって camera rayから色を計算

    • 既存の多くのモデルよりも高精細なレンダリングが可能 • 全結合層のみで構成されており軽量、効率よくシーン情報を保持できている 19
  8. NeRF in the Wild:概要 • NeRF(オリジナル)の仮定 ◦ 基本的に同じシーンを異なる角度から撮った画像 ◦ 光の当たり方の違いや物体の写り込みは想定外

    • NeRF in the Wild(NeRF-W) ◦ 画像の環境を明示的にモデル化 ▪ 見た目(appearance) ▪ 一時的な物体(transient object) ◦ 多様な環境の画像に対して 柔軟にNeRFを学習可能(=in the wild) ◦ Appearanceを調整した生成も可能 21 NeRF-Wの学習画像例
  9. NeRF-W:Optimize • NeRFと同様にCoarse, Fineの2モデルを用意 • Coarseモデル:staticパートのみからピクセル値計算、二乗誤差 • Fineモデル:transient objectの不確実性βを考慮 ◦

    あいまいなピクセルにおける損失を軽減する ◦ 過剰にtransient objectとして扱わないための正則化 26 Coarseモデル の損失 Fineモデル の損失 正規分布の 負の対数尤度 正則項
  10. NeRF-W:Experiments • Setting ◦ Phototourism datasetから6つのシーンを抽出 ◦ 各シーンで学習、評価 • Evaluation

    ◦ シーンの画像群をtrain, testに分け、test視点での生成性能を評価する ◦ 評価指標:PSNR、MS-SSIM、LPIPS ▪ LPIPS:The Unreasonable Effectiveness of Deep Features as a Perceptual Metric ◦ テスト画像のAppearanceベクトル ▪ 画像左半分によって最適化、右半分で評価 28
  11. NeRF-W:Quantitative Results • 定量的に優れた生成性能 ◦ NeRF-A:Appearanceベクトルのみ ◦ NeRF-U:Transientベクトルのみ • LPIPSは一部NRW(Neural

    Rendering in the Wild)が優れている ◦ LPIPSはadversarial, perceptual lossを良く評価しやすいため 29
  12. NeRF-W:まとめ • Limitation ◦ 映る頻度が少ない領域は捉えづらい ◦ カメラ姿勢のキャリブレーションが 失敗が生成にも影響する (従来のNeRFと同じ) •

    Conclusion ◦ 画像ごとのappearance, transient objectsをモデル化することで、多様な環境の画像群 (=in-the-wild data)からNeRFの学習が可能になった ◦ 定量・定性の両面で優れた視点生成が可能になった 32
  13. GIRAFFE:概要 • 目標:Compositional 3D representation for controllable synthesis ◦ 背景や物体の組み合わせ

    によってシーンを表現 ◦ 物体の配置や角度、視点など 様々な要素を調整して描画 ◦ GIRAFFE: Project Page 34
  14. GIRAFFE:概要 • アプローチ ◦ 複数の物体+背景によってシーンをモデリング ◦ 3D空間上の色ではなく特徴ベクトルによってボリュームレンダリング ◦ 敵対的学習を利用 •

    注目ポイント:Disentanglement emerges without supervision ◦ アーキテクチャによるバイアスのみで、物体や背景の表現を学習できた ◦ →物体だけ、背景だけなどの詳細なシーンコントロールが可能 35
  15. GIRAFFE:アーキテクチャ:Neural Feature Field 41 • NeRFとは異なり、色ではなく特徴ベクトルを返す field function ◦ 入力:位置、向き、物体or背景のshape,

    appearanceベクトル ◦ 出力:特徴ベクトル、密度 ◦ 物体用と背景用の2つのfield functionを使い分け Object Feature Field Background Feature Field
  16. GIRAFFE:アーキテクチャ:まとめ 46  N-1個の物体+背景の • zs:shapeベクトル • za:appearanceベクトル • T:配置(affine)パラメータ カメラの位置と向き

    • d:camera rayの向き • x:評価点の位置 • γ:positional encoding  N-1個の物体+背景の • hθ:feature field function • f:評価点における特徴量 • σ:評価点における密度 • C:各物体の特徴量・密度の統合 ボリュームレンダリング CNNによって特徴マップを 画像へ変換
  17. GIRAFFE:Comparison to Baseline Methods • FID(Frechet Inception Distance)による生成品質の評価 ◦ 64×64,

    256×256の2つの解像度 ◦ 既存の画像生成手法よりも精細な生成が可能 ◦ ※GRAF(Generative NeRF)は筆者らの先行手法 51
  18. GIRAFFE:Comparison to Baseline Methods • パラメータ数も既存手法より少ない • 推論(生成)速度 ◦ 低解像度の特徴マップを拡大することで

    GRAF(直接画像をレンダリングする) よりも推論速度向上 ◦ 64×64:110.1ms/枚→4.8ms/枚 ◦ 256×256:1595.0ms/枚→5.8ms/枚 52
  19. GIRAFFE:まとめ • 目標:Compositional 3D representation for controllable synthesis • アプローチ

    ◦ 物体・背景などシーンの構成要素を明示的にモデリング ◦ 色ではなく特徴量でボリュームレンダリング ◦ 敵対的学習 • 結果 ◦ 教師なしで物体・背景の表現分離を獲得 ◦ Controllableなシーン生成が可能になった ◦ 定量的にも既存手法より優れている 54
  20. References • 論文 ◦ NeRF: Neural Radiance Fields ◦ NeRF

    in the Wild ◦ GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields • その他 ◦ OpenCV: Camera Calibration and 3D Reconstruction ◦ Richard Szeliski, コンピュータビジョン アルゴリズムと応用 , 共立出版, 2013. ◦ 金谷健一, 菅谷保之, 金澤靖, 3次元コンピュータビジョン計算ハンドブック , 森北出版, 2016. 55