Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
リモートワークは難しい - それでもぼくらは 歯をくいしばってやっていく テストエンジニア版...
Search
KASUYA, Daisuke
July 05, 2019
Business
1
2k
リモートワークは難しい - それでもぼくらは 歯をくいしばってやっていく テストエンジニア版 - / JaSST Kansai 2019
KASUYA, Daisuke
July 05, 2019
Tweet
Share
More Decks by KASUYA, Daisuke
See All by KASUYA, Daisuke
はてなのチーム開発一巡り / Hatena Engineer Seminar 30
daiksy
0
640
ふりかえりカンファレンスLT/Get Wild
daiksy
0
1.8k
スクラムマスターの採用事情 / scrum fest fukuoka 2023
daiksy
0
2.6k
スクラムのスケールとチームトポロジー / Scaled Scrum and Team Topologies
daiksy
1
1.3k
Scrum@Scaleの理論と実装 / RSGT2022
daiksy
2
10k
リモートワークに最適なスクラムチームの人数についての仮説 / Kyoto Agile 2021
daiksy
0
250
スクラムを軸に据えた キャリア戦略 / Scrum Fest Osaka 2021
daiksy
2
7k
インフラ障害対応演習LT版 / evacuation drill of systems
daiksy
1
750
この半年で変わったものと変わらないもの - SaaS開発の現場より / Developers Summit 2020 Summer
daiksy
0
5.1k
Other Decks in Business
See All in Business
株式会社AbemaTV 会社説明資料
abematv
2
1k
Mercari-Fact-book_jp
mercari_inc
3
150k
不二製油グループ本社 (02/07/2025 プレスリリース)
tsogo817421
2
230
Sales Marker Culture Book(English)
salesmarker
PRO
2
3.8k
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
990
わわわ理念制作所 紹介資料
yuadachi
0
440
サイボウズの開発チームが行っているスクラムの紹介
tonionagauzzi
0
360
merpay-Overview
mercari_inc
7
170k
HRBP+のご紹介
masakisukeda
0
790
TSUIDE_採用ピッチ資料
tsuide
0
150
一般社団法人ディレクションサポート協会(DiSA)
masakisukeda
0
550
新卒エンジニア向け会社紹介資料/newgraduates-engineer
nextbeat
2
1.8k
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.3k
How STYLIGHT went responsive
nonsquared
98
5.4k
A Tale of Four Properties
chriscoyier
158
23k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.8k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
Scaling GitHub
holman
459
140k
Speed Design
sergeychernyshev
27
790
The World Runs on Bad Software
bkeepers
PRO
67
11k
Documentation Writing (for coders)
carmenintech
67
4.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
Transcript
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘Β ࣃΛ͍͍ͬͯͬͯ͘͘͠ ςετΤϯδχΞ൛ - 2019-07-05 JaSST’19 Kansai גࣜձࣾ
ͯͳ പ୩େี (id:daiksy / @daiksy)
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘Β ࣃΛ͍͍ͬͯͬͯ͘͘͠ ςετΤϯδχΞ൛ - 2019-07-05 JaSST’19 Kansai גࣜձࣾ
ͯͳ പ୩େี (id:daiksy / @daiksy)
ࣗݾհ പ୩େี(id:daiksy / @daiksy) ▸ גࣜձࣾ ͯͳ ▸ Mackerel։ൃνʔϜσΟϨΫλʔ ▸
גࣜձࣾτϚϧό ৫։ൃࢧԉ ▸ Chatworkגࣜձࣾ ݱϚωʔδϟࢧԉ ▸ ೝఆεΫϥϜϚελʔ
ϦϞʔτϫʔΫͱʁ ▸ ҟͳΔϩέʔγϣϯʹ͍ΔਓͱࣄΛ͢Δ ▸ ଞڌ ▸ ଞࣾ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠
͍ͬͯ͘
ϦϞʔτϫʔΫͱʁ ▸ ςετΤϯδχΞͷจ຺ ▸ ֎෦ͷςετձࣾ ▸ ҧ͏෦ʹ͍ΔQA෦ ▸ ͜ΕΒϦϞʔτϫʔΫ ϦϞʔτϫʔΫ͍͠
- ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϦϞʔτϫʔΫͱʁ ▸ ࠓͷςʔϚʮςετΤϯδχΞͷಇ͖ํʯ ▸ ࡏϫʔΫͷจ຺Λத৺ʹ͍͖͍ٞͯͨ͠ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
Mackerel։ൃνʔϜͷ ژ Ԭࢁ ౦ژ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
Mackerel։ൃνʔϜͷ ژ Ԭࢁ ౦ژ ΦϑΟε ΦϑΟε ࣗ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠
͍ͬͯ͘
ϦϞʔτϫʔΫͷϝϦοτ ▸ ॊೈͳಇ͖ํ ▸ ࢠҭͯ, հޢ, ௨Ӄ ▸ झຯ׆ಈࣾ֎׆ಈͱࣄͷόϥϯγϯά ▸
ํͷษڧձࢀՃͰதݱͷϗςϧͰࣄ͠ ͨΓ ▸ ※ͨͩ͠ମௐෆྑͷͱ͖ී௨ʹٳΈ·͠ΐ͏ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϦϞʔτϫʔΫ͍͠ ▸ ಋೖ͢ΔΈΛऔΓΊΔاۀ૿͖͑ͯ ͨ ▸ ΦϑΟεΛॆ࣮ͤͯ͞ಉҰϩέʔγϣϯͰಇ͜ ͏ͱ͍͏ߟ͑ ▸ ΅͘ΦϑΟεͰࣄ͍ͨ͠ ϦϞʔτϫʔΫ͍͠
- ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϦϞʔτϫʔΫ͍͠ ▸ ͳʹ͕͍ͩ͠Ζ͏ʁ ▸ ࣄͯ͠Δ;ΓΛͯ͠αϘΔͷͰʁ ▸ ਓੜͰҰͨΓͱɺձࣾͰࣄΛαϘͬ ͨ͜ͱ͕ͳ͍ਓ͚͕ͩੴΛ͛ͳ͍͞ ϦϞʔτϫʔΫ͍͠ -
ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϦϞʔτϫʔΫ͍͠ ▸ ͳʹ͕͍ͩ͠Ζ͏ʁ ▸ ࿑ཧͷ͠͞ ▸ ಇ͖͗ͯ͢͠·͍͕ͪ ▸ αϘΓΑΓͪ͜Βͷํ͕࿑ཧతʹ৺ ▸
ࣄͱϓϥΠϕʔτͷڥք͕ᐆດ ▸ ਅͷࡋྔ࿑ಇͰͳ͍ͱଟΓཱͨͳ͍ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϦϞʔτϫʔΫ͍͠ ▸ ͳʹ͕͍ͩ͠Ζ͏ʁ ▸ ϝϯόʔʹࣗओੑ͕ٻΊΒΕΔ ▸ إ͕ݟ͑ͳ͍ͷͰɺࠔͬͯΔ༷ࢠΛपΓͯ͠ ͘Εͳ͍ ▸ ͔ࣗΒಈ͘ඞཁ͕͋Δ
▸ ࣗओੑ͕ඞཁ == ݸਓͷࡋྔඞཁ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϦϞʔτϫʔΫ͍͠ ▸ ͳʹ͕͍ͩ͠Ζ͏ʁ ▸ ಥ͖٧ΊΔͱίϛϡχέʔγϣϯͷ͠͞ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϦϞʔτϫʔΫίϛϡχέʔγϣϯ͍͠ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ಉҰϩέʔγϣϯͱϦϞʔτͷࠩҟ ▸ ಉظతͳίϛϡχέʔγϣϯ͕͍͠ ▸ σεΫ·Ͱग़͍ͯΛ͔͚ͨΓͰ͖ͳ͍ ▸ جຊඇಉظͳίϛϡχέʔγϣϯʹͳΔ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠
͍ͬͯ͘
ίϛϡχέʔγϣϯͷ͠͞Λ͍͔ʹࠀ͢Δ͔ ▸ ಓ۩Λͬͯ͢Δ ▸ ಛੑΛཧղͯ͠ίϯτϩʔϧ͢Δ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ಓ۩Λ͔ͭͬͯ͢Δ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ಓ۩Λ͏ ▸ खࢴ ▸ email ▸ ి ▸ νϟοτ ▸
ςϨϏձٞ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
MackerelνʔϜͰʁ ▸ νϟοτ ▸ GithubͷIssue ▸ ςϨϏ௨ (GoogleϋϯάΞτ FaceTime)
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
MackerelνʔϜͰʁ ▸ νϟοτ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
MackerelνʔϜͰʁ ▸ GithubͷIssue ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
MackerelνʔϜͰʁ ▸ iPadͷFaceTime ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϝΠϯͷίϛϡχέʔγϣϯ ▸ νϟοτ (Slack) ▸ ίϛϡχέʔγϣϯͷத৺ ▸ ࣄ༻ͱࡶஊ༻ (ࣄΛ͢Δʹ࣮ࡶஊॏཁ) ▸
ςΩετ͚ͩʹཔΒͳ͍ɻඞཁʹԠͯ͡௨ػೳ ͰԻձେʹɻͨͩ͠Ի௨ͷϩά νʔϜͱwikiͳͲͰڞ༗͢Δ͜ͱɻ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ಛੑΛཧղ͢Δ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘ https://mirai.doda.jp/series/interview/tokoroten-nakayama/
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘ https://mirai.doda.jp/series/interview/tokoroten-nakayama/ 4MBDLͰจষΛߟ͑ͳ͕Βɺॻ͚Δਓ͕͕େ͖͘ɺ͙͢ʹద ͳݴ༿ͰԠͰ͖ͳ͍ਓɺձͷྲྀΕʹஔ͍͍͔ͯΕͯ͠·͏ɻ ৽ೖࣾһʹ͔͗Βͣɺଞਓ͔ΒͷධՁʹ͢ΔใΛൃ৴͢Δͬͯ ؆୯͡Όͳ͍ɻແཧཧΞτϓοτͤ͞Α͏ͱ͢Δձࣾ͋Γ· ͕͢ɺ৺ཧత҆શ͕ͭ͘ΒΕ͍ͯͳ͍ڥͰɺ͔͑ͬͯʮແʯ
ʮແೳʯΛࢦఠ͞ΕΔ͜ͱͷڪා৺Λॿͯ͠͠·͍·͢ɻΞ τϓοτ͕Ͱ͖ͳ͍ਓɺ͍͔ʹΠϯϓοτ͔ͨ͠ͰධՁͯ͋͠ ͍͍͛ͯΜ͡Όͳ͍Ͱ͠ΐ͏͔ɻ
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘ https://www.slideshare.net/TokorotenNakayama/2019-structure-of-psychological-safety
ޱ಄Ͱͷ૬ஊ ▸ ݪଇ 1:1 ▸ पΓͷਓͷࣖʹͳΜͱͳ͕͘ಧ͍͍ͯͯɺϐ ϯͱདྷͨਓ͕Ԡͨ͠Γ͢Δ ▸ ৺ཧత҆શͷϋʔυϧ͍ ϦϞʔτϫʔΫ͍͠
- ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
νϟοτͰͷ૬ஊ ▸ ݪଇ 1:n ▸ ࣗͷॻ͍ͨจষ͕ϩάͱͯ͠Δ ▸ ϝϯόʔશһ͕ಡΉ ▸ ৺ཧత҆શͷϋʔυϧߴ͍
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ϊϯόʔόϧͳใͷܽམ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ςΩετʹΑΔίϛϡχέʔγϣϯ ͷ͠͞ ▸ ςΩετใྔ͕গͳ͍ ▸ ର໘ > ςϨϏ௨ > Ի௨
> ςΩετ ▸ ͷ༲ ▸ إͷදɾ ▸ ۭؾײ (?) ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ςΩετʹΑΔίϛϡχέʔγϣϯ ͷ͠͞ ▸ ςΩετίϛϡχέʔγϣϯʹΑΔใͷܽ Λิ͏ ▸ ໟͮ͘Ζ͍ͷίϛϡχέʔγϣϯ ▸ ͜ͷਓԿΛΈɺԿʹই͖ͭɺͲͷΑ͏ ʹࣄΛਐΊΔ͜ͱΛྑ͠ͱ͢Δ͔
▸ ࡶஊ͕ॏཁ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ςΩετʹΑΔίϛϡχέʔγϣϯ ͷ͠͞ ▸ ςΩετίϛϡχέʔγϣϯʹΑΔใͷܽΛิ͏ ▸ ςΩετͷ ▸ ςΩετใ͕গͳ͍ͷͰɺϑϥοτͳײ ෆػݏؾຯʹΘΔ ▸
গ͠େ͛͞ʹײදݱΛೖΕΔͱྑ͍ ▸ ײ୰ූʂ ֆจࣈ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ςετΤϯδχΞʹͱͬͯͷϦϞʔτϫʔΫ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ڥͷ͠͞ ▸ ݕূ͕Ոʹ͍͍͋ͬͯͷ͔ʁ ▸ ςετσʔλʹՈ͔ΒΞΫηεͯ͠ྑ͍͔ʁ ▸ ςετͰຊ൪σʔλΘͳ͍ͱ͍͏ ▸ ࣮ଶͱͯ͠ɺग़ՙલͷΛ࣋ͪग़͢͜ͱʹͳΔ ▸
ͦͦۀछʹΑͬͯಛघͳઃඋ͕ඞཁͳ߹ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ڥͷ͠͞ ▸ ෛՙࢼݧ ▸ ՈͷωοτϫʔΫ͔ΒΠϯλʔωοτܦ༝Ͱ GatlingͿͬ์͢ɻౖΒΕͦ͏ɻɻɻ ▸ ඇػೳςετ ϦϞʔτϫʔΫ͍͠ -
ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
Mackerelͷ߹ ▸ ϦϦʔεޙͷSaaSαʔϏε ▸ ར༻ҰൠతͳPC ▸ ࡞ۀʹඞཁͳπʔϧͯ͢ωοτϫʔΫܦ༝ͰΞ ΫηεՄೳ ▸ ϦϞʔτ࡞ۀͷڥ͕ɺఆΊΒΕͨηΩϡϦςΟϙ
Ϧγʔʹ९क͍ͯ͠Εྑ͍ͱߟ͑Δ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ڥͷ͠͞ ▸ Web։ൃͳΒϦϞʔτϫʔΫ͝͠ʹςετۀ Ͱ͖ͦ͏ ▸ WebͰϞόΠϧͷݕূͱ͔ͩͱ͍͔͠ Ͱ͢ͶɻɻʢੲͷΨϥέʔͰ͋ͬͨΑ͏ͳશ ػछͰࢼݧΈ͍ͨͳ ϦϞʔτϫʔΫ͍͠ -
ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ίϛϡχέʔγϣϯͷ͠͞ ▸ ςετܭըੳͷϑΣʔζͰɺ։ൃΤϯδχ ΞͱΕ͍ͯͯΓͮΒ͞ͳ͍͔ ▸ ςετγφϦΦͷϨϏϡʔͳͲϦϞʔτͰΔ ͷՄೳ͔ʁ ▸ ΤϯδχΞͷίʔυϨϏϡʔͱগ͠งғؾ ҧ͏ͷͰͳ͍͔
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ίϛϡχέʔγϣϯͷ͠͞ ▸ ނোථͳͲͷඇಉظͳίϛϡχέʔγϣϯʹ׳ Ε͍ͯΔͱ͍͏ଆ໘͋Γͦ͏ ▸ ϦϞʔτϫʔΫͷϙΠϯτͱͳΔඇಉظίϛϡ χέʔγϣϯͷࠀ͞Ε͍ͯΔͱݟΔ͜ ͱͰ͖Δ ϦϞʔτϫʔΫ͍͠ -
ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ίϛϡχέʔγϣϯͷ͠͞ ▸ ΦϯαΠτͩͬͨΒى͖ͳ͍͋Δ ▸ ࢼݧதͷঢ়ଶ͕Θ͔ΓͮΒ͍ ▸ ΒͣʹσϓϩΠΛΒ͞ΕͯࢼݧதʹΞ ϓϦέʔγϣϯมΘͬͪΌ͏ͱ͔… ▸ ςετσʔλফ͞ΕͪΌ͏ͱ͔…
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
ࣄͷཧͦ͢͠͏ ▸ ςετ࣮ࢪͷϑΣʔζͰɺςετγφϦΦͷ ফԽͳͲͰਐḿੜ࢈ੑ͕͖ͬΓͱ͍ͯ͠ Δ৬छͳͷͰɺཧ͍͔͢͠͠Εͳ͍ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
૬ੑͷΑ͍ࣄ ▸ ςΫχΧϧαϙʔτ ▸ ςΫχΧϧυΩϡϝϯτͷ࡞ ▸ ग़ՙࡁΈΛλʔήοτͱͨ͠ࣄͰ͋Ε Ͱ͖Δؾ͕͢Δ ϦϞʔτϫʔΫ͍͠ -
ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
݅ΛຬͨͤϦϞʔτϫʔΫΓ͘͢ͳ͍ͬͯΔ ▸ ຊશࠃͲ͜ʹ͍ͯߴΠϯλʔωοτ͕ ͑Δ ▸ DockerͳͲͷίϯςφٕज़ͷਐาͰςετڥ ༻ҙ͍͢͠ ▸ ΦϯϥΠϯͷίϛϡχέʔγϣϯखஈબࢶ ͕͋Δ
ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
▸ ϦϞʔτϫʔΫ͍͠ ▸ ςετΤϯδχΞͷ߹͞Βʹ͍͠ ▸ ʹΑͬͯՄೳੑ͋Δ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘
·ͱΊ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ ϦϞʔτϫʔΫ͍͠ - ͦΕͰ΅͘ΒࣃΛ͍ͬͯ͘͠ ͍ͬͯ͘