Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Go for GenAI!
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Daniela Petruzalek
December 01, 2025
Programming
0
16
Go for GenAI!
Keynote presented at DevFest Bletchley Park 2025 highlighting the new developments in Go for GenAI
Daniela Petruzalek
December 01, 2025
Tweet
Share
More Decks by Daniela Petruzalek
See All by Daniela Petruzalek
[Golab 2025] The Gopher's Craft in the Age of AI
danicat
0
11
Making of GoDoctor: Lessons Learned While Building a Go-Aware MCP Server
danicat
0
16
Diagnostic Agent with ADK, Gemini and OSQuery
danicat
0
16
Hello, MCP World!
danicat
0
17
A Gopher's Guide to Vibe Coding
danicat
0
14
How to Create a Diagnostic Agent with Gemini and OSQuery
danicat
0
37
How to create a diagnostic agent using Gemini and osquery
danicat
0
33
Como criar um agente de diagnósticos usando Gemini e Osquery
danicat
0
82
A Gopher's Guide to Vibe Coding
danicat
0
250
Other Decks in Programming
See All in Programming
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
130
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
950
AI & Enginnering
codelynx
0
110
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
650
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
AI時代の認知負荷との向き合い方
optfit
0
160
Grafana:建立系統全知視角的捷徑
blueswen
0
330
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
610
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
560
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
430
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
3.9k
Featured
See All Featured
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
The agentic SEO stack - context over prompts
schlessera
0
630
[SF Ruby Conf 2025] Rails X
palkan
1
750
A Tale of Four Properties
chriscoyier
162
24k
Six Lessons from altMBA
skipperchong
29
4.1k
Deep Space Network (abreviated)
tonyrice
0
47
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
430
RailsConf 2023
tenderlove
30
1.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Facilitating Awesome Meetings
lara
57
6.8k
Transcript
Bletchley Park Daniela Petruzalek Developer Relations, Google Cloud Go for
GenAI!
About me… DevRel at Google UK Originally from Brazil Backend
/ Data Engineer Currently obsessed with AI Love Games, Anime and Cats =^_^=
Agenda • Why Go? • Genkit Go • Agent Development
Kit • Go SDK for MCP
Why Go?
Why Go? Because it has a cute mascot! Bletchley Park
Or because… It’s a compiled language Code is simple to
read / maintain It has a rich standard library Great performance and tooling It is fun!* * based on my totally biased personal opinion
The two sides of GenAI Code generation (aka “vibe coding”)
AI workloads in production
Go for GenAI: Code generation Compiled: tight feedback loop Code
is standardised: better for training models Standard library: less moving parts Tooling: automate code quality checks
Go for GenAI: Production Workloads Great performance Concurrency out-of-the-box (go
func()) Tooling (go vet, trace, pprof, static analysis …) Rich ecosystem of AI frameworks
Genkit is an open-source framework for building full-stack AI-powered applications
Bletchley Park
Key Features Model support: Google, Ollama, OpenAI, … Building blocks:
structured output, tool calling, multi-modal input/output and more. Developer tools: CLI and developer UI Production monitoring: Firebase dashboard
// Genkit: Define and Run a Flow g := genkit.Init(ctx,
genkit.WithPlugins(&googlegenai.VertexAI{}) ) helloFlow := genkit.DefineFlow(g, "helloFlow", func(ctx context.Context, prompt string) (string, error) { resp, _ := genkit.Generate(ctx, g, ai.WithModelName("vertexai/gemini-2.5-flash"), ai.WithPrompt(prompt)) return resp.Text(), nil }, ) result, _ := helloFlow.Run(ctx, "Say hello!") fmt.Println(result)
// Genkit: Define a Flow Server g := genkit.Init(ctx, genkit.WithPlugins(&googlegenai.VertexAI{})
) genkit.DefineFlow(g, "helloFlow", func(ctx context.Context, prompt string) (string, error) { resp, _ := genkit.Generate(ctx, g, ai.WithModelName("vertexai/gemini-2.5-flash"), ai.WithPrompt(prompt)) return resp.Text(), nil }, ) // Keep running to serve the flow <-ctx.Done()
None
Agent Development Kit (ADK) for Go An open-source toolkit for
building, evaluating, and deploying AI agents Bletchley Park
Key Features Model agnostic, deployment agnostic Agentic workflows: sequential, parallel,
loop, … Pre-built (search, code exec) and custom tools Built-in evaluation
// ADK: Create and Launch an Agent model, _ :=
gemini.NewModel(ctx, "gemini-2.5-flash", &genai.ClientConfig{Backend: genai.BackendVertexAI}) agent, _ := llmagent.New(llmagent.Config{ Name: "hello_agent", Model: model, Instruction: "You are a helpful assistant.", }) full.NewLauncher().Execute(ctx, &adk.Config{ AgentLoader: services.NewSingleAgentLoader(agent), }, []string{"console"})
None
Genkit vs ADK
None
Model Context Protocol (MCP) is an open standard that allows
AI models to connect and communicate with external tools and data sources Bletchley Park Go SDK for MCP
Shameless plug… Session: Hello, MCP World! @ 12:20 PM Lab:
Build an MCP with Gemini CLI and Go @ 3:45 PM
Bletchley Park Daniela Petruzalek Developer Relations, Google Cloud danicat.dev |
@danicat83 Thank you!