Group, University of Hull COMPARATIVE GENOMICS OF ROOT KNOT NEMATODES @davelunt speakerdeck.com/davelunt slides available [email protected] davelunt.net
Ennos, Amir Szitenberg, Karim Gharbi, Chris Mitchell, Steve Moss, Tom Powers, Janete Brito, Etienne Danchin, Marian Thomson & GenePool Funding NERC, BBSRC, Yorkshire Agricultural Society, Nuffield Foundation, University of Hull, University of Edinburgh
important agricultural pest species! • ~5% loss of world agriculture! • Enormous plant host range! • parasitise all main crop plants JD Eisenback RKN juveniles enter root tip infected uninfected SEM Meloidogyne female JD Eisenback
modes in a single genus • Many species are mitotic parthenogens (apomixis) without chromosome pairs Asexuals- meiosis absent • Other species are meiotic parthenogens • automixis • Some species are obligatory outbreeding sexuals with males & females • amphimixis Sexuals- meiosis present
modes in a single genus • Many species are mitotic parthenogens without chromosome pairs • Incapable of meiosis! • Could be ‘ancient’ asexuals! • 17 million years without meiosis?
an ameiotic form evolving for a very long period of time we might imagine its two chromosome sets becoming completely unlike, so that it could no longer be considered as a diploid either in a genetical or cytological sense."! Sometimes called Meselson effect, similar to paralogous loci A B C D E F sexual asexual origin of asexuality asexual MJD White ‘Animal Cytology and Evolution’ 1st ed 1945, p283
E F Extreme Asexual ASD alleles taxon Recent Ancient 1 2 3 asexual sexual asexual Redrawn after Birky 1996 Divergence between alleles of sexual species Divergence between asexual species ‘alleles’ alleles by recom bination m eiosis hom ogenizes
can be very large within asexual individuals Species Max intraspecific substitutions Substitutions to closest relative M. incognita 15 0 M. javanica M. javanica 16 0 M. incognita RNA polymerase II Dystrophin Species Max intraspecific substitutions Substitutions to closest relative M. javanica 30 0 M. arenaria M. arenaria 32 0 M. javanica Yet identical alleles can be found between different species
can be very large within asexual individuals Species Max intraspecific substitutions Substitutions to closest relative M. incognita 15 0 M. javanica M. javanica 16 0 M. incognita RNA polymerase II Dystrophin Species Max intraspecific substitutions Substitutions to closest relative M. javanica 30 0 M. arenaria M. arenaria 32 0 M. javanica Yet identical alleles can be found between different species This allele sharing is not predicted by ancient asexuality, and suggests interspecific hybridisation
E F Extreme Asexual ASD alleles taxon Recent Ancient 1 2 3 asexual sexual asexual Redrawn after Birky 1996 Divergence between alleles of sexual species Divergence between asexual species ‘alleles’ alleles by recom bination m eiosis hom ogenises
ASD Alleles Taxa Recent Ancient Sexual parental species Redrawn after Birky 1996 Divergence between alleles of parental species Divergence between hybrid species alleles m eiosis hom ogenises alleles by recom bination A C D Ancestor of sexual parental species Hybridization event meiosis homogenises alleles Sexual parental species hybrid apomict hybrid apomict mitotic
Ward lab, http:// www.mcb.arizona.edu/wardlab/ • Nematodes have amoeboid (crawling) sperm! • msp genes only expressed in sperm and spermatocytes! • Structural protein of sperm! • Prediction: msp gene should show signatures of loss of function (pseudogenization) in asexuals Major Sperm Protein
asexuality on basis of interspecific allele sharing and identical molecular evolution of sperm protein genes! Data suggests interspecific hybrid origins Lunt DH 2008 BMC Evolutionary Biology 8:194
is found within the phylogenetic diversity of asexual species! It reproduces sexually by automixis! Could it be a parent of the asexual lineages via interspecific hybridisation? MELOIDOGYNE HYBRIDISATION GENOMICS M.floridensis M. ??? M. incognita M. javanica M. arenaria x apomicts parental species automict apomict apomict automict
floridensis genome and are able to compare to 2 other Meloidogyne genomes published by other groups M.floridensis M. ??? M. incognita M. javanica M. arenaria x apomicts parental species automict asexual, hybrid? sexual, parental? sexual, outgroup 100MB, 100x coverage, 15.3k protein coding loci
at the within-genome patterns of diversity to determine hybrid nature of genomes! ! 2. look at phylogenetic relationships of all genes to study origins and parents MELOIDOGYNE HYBRIDISATION GENOMICS 1: Intra-genomic diversity 2: Phylogenomics Investigated using whole genome sequences and 2 distinct approaches;
DIVERGENCE 1: Intra-genomic diversity look at the within-genome patterns of diversity to determine hybrid nature of genomes A B A D C Alleles Taxa Recent Ancient Sexual parental species Divergence between alleles of parental species Divergence between hybrid species alleles A C D Ancestor of sexual parental species Hybridization event Sexual parental species hybrid apomict hybrid apomict mitotic
DIVERGENCE ‘Alleles’ (homeologues) may date to the divergence of the parental species which hybridized A B A D C Alleles Taxa Recent Ancient Sexual parental species Divergence between alleles of parental species Divergence between hybrid species alleles A C D Ancestor of sexual parental species Hybridization event Sexual parental species hybrid apomict hybrid apomict mitotic
arXiv 2013 http://arxiv.org/abs/1306.6163 Coding sequences from each of the three target genomes were compared to the set of genes from the same species! The percent identity of the best matching (non-self) coding sequence was calculated, and is plotted as a frequency histogram! Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not Self identity comparisons
arXiv 2013 http://arxiv.org/abs/1306.6163 Coding sequences from each of the three target genomes (M. hapla, M. incognita and M. floridensis) were compared to the set of genes from the same species! The percent identity of the best matching (non- self) coding sequence was calculated, and is plotted as a frequency histogram! Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not Self identity comparisons
arXiv 2013 http://arxiv.org/abs/1306.6163 Coding sequences from each of the three target genomes (M. hapla, M. incognita and M. floridensis) were compared to the set of genes from the same species! The percent identity of the best matching (non-self) coding sequence was calculated, and is plotted as a frequency histogram! Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not Self identity comparisons
arXiv 2013 http://arxiv.org/abs/1306.6163 Coding sequences from each of the three target genomes (M. hapla, M. incognita and M. floridensis) were compared to the set of genes from the same species! The percent identity of the best matching (non-self) coding sequence was calculated, and is plotted as a frequency histogram! Both M. incognita and M. floridensis show evidence of presence of many duplicates, while M. hapla does not! This is exactly the pattern expected for hybrid genomes Self identity comparisons
2013 http://arxiv.org/abs/1306.6163 • Assembly size is not haploid genome size for hybrid species! • Divergence (4-8%) between homeologous (hybrid) copies will preclude assembly! • Our assembly of 100Mb is ~2x 50-54Mb genome size of M. hapla 1: Intra-genomic diversity 2: Phylogenomics
very many ways species could hybridise, duplicate genes, lose genes! We have selected a broad range of possibilities informed by prior knowledge! We have tested their predictions phylogenetically M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 A M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 C M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y D 2. PHYLOGENOMIC ANALYSES
X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 Z M. incognita Z+Z 1 & 2 X+Y M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 Z M. incognita +Z X+Y M. hapla X Y M. floridensis X+Y C Scenario 4 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla D M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 Hybridization hypotheses A B C D
2013 http://arxiv.org/abs/1306.6163 M. hapla M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 A M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y C M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y D • Coding sequences from 3 genomes were placed into orthologous groups (InParanoid)! • 4018 ortholog clusters included all 3 species! • We retained those with a single copy in the outgroup M. hapla ! • Phylogenies of relationships between Mi and Mf gene copies (RAxML)! • Trees were parsed and pooled to represent frequencies of different relationships
outgroup (black square) Grey square indicates relative frequency of those topologies Trees are pooled within squares into different patterns of relationships Grid squares represent different numbers of gene copies
2013 http://arxiv.org/abs/1306.6163 M. hapla M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 A M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y C M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 M. hapla X Z M. floridensis M. incognita X X+Z B Scenario 3 M. hapla X Z M. floridensis M. incognita X Z+Z A Scenario 1 & 2 X+Y D • We assess the fit of the tree topologies to our hypotheses! • Five out of seven cluster sets, and 95% of all trees, support hybrid origins for both M. floridensis and M. incognita! • ie exclude hypotheses A and B! • Hypothesis C best explains 17 trees! • Hypothesis D best explains 1335 trees
2013 http://arxiv.org/abs/1306.6163 M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y A M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y B M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z M. hapla X Z M. floridensis M. incognita X X+Z M. hapla X Z M. floridensis M. incognita X Z+Z X+Y C M. floridensis is a parental species of “double hybrid” M. incognita with other parent unknown M. hapla X Y Z M. floridensis M. incognita X+Y Y+Z C Scenario 4 M. hapla X Y Z M. floridensis M. incognita X+Y (X+Y)+Z D Scenario 5 X Z M. floridensis M. incognita X X+Z B Scenario 3 X+Y Hypothesis D
hybrid speciation may be common in Meloidogyne! • Do asexual agricultural pathogens have a single (hybrid) origin! • What are the common features of hybrid genome architecture?! • Ongoing work...
phylogenetic design! • Testing effect of recombination & breeding system on genome change! • hybrids, inbred, outbred, loss of meiosis, TEs, mutational patterns, gene families Current NERC grant on Meloidogyne breeding system and genome evolution
Understanding the mutational and selective changes in replicated phylogenetic design What mechanisms promote variation in obligatory inbreeding versus outbreeding species?
Understanding the mutational and selective changes in replicated phylogenetic design How does meiosis affect adaptation?! • gene duplication and origin of new genes! • transgressive segregation
when the absolute values of traits in some hybrids exceed the trait variation shown by either parental lineage Hybrid Parent 1 Parent 2 Arrows represent ‘phenotypic range’