Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My research talk for CCA promotion
Search
Dan Foreman-Mackey
February 03, 2022
Science
1
770
My research talk for CCA promotion
A summary of what I've been up to for the past few years and where my research program is going.
Dan Foreman-Mackey
February 03, 2022
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
130
Open Software for Astrophysics, AAS241
dfm
2
520
Astronomical software
dfm
1
720
emcee-odi
dfm
1
650
Exoplanet population inference: a tutorial
dfm
3
450
Data-driven discovery in the astronomical time domain
dfm
6
710
TensorFlow for astronomers
dfm
6
790
How to find a transiting exoplanets
dfm
1
460
Long-period transiting exoplanets
dfm
1
310
Other Decks in Science
See All in Science
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
480
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.2k
CV_5_3dVision
hachama
0
110
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
900
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
890
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
0
520
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
370
SciPyDataJapan 2025
schwalbe10
0
230
WCS-LA-2024
lcolladotor
0
230
統計学入門講座 第1回スライド
techmathproject
0
320
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.3k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Building an army of robots
kneath
306
45k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
Art, The Web, and Tiny UX
lynnandtonic
298
21k
Into the Great Unknown - MozCon
thekraken
39
1.8k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.8k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.2k
Balancing Empowerment & Direction
lara
1
84
How STYLIGHT went responsive
nonsquared
100
5.6k
Transcript
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS by Dan Foreman-Mackey
who am I? / / what’ve I been up to?
1
7 [1] solving Hard™ data analysis problems [2] enabling and
empowering astrophysicists
implementation.
data = > physics
open source software for astrophysics 2
why?
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
my open source contributions 3
None
gaussian processes 4
p(data|physics)
data ~ N(model; noise)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
data ~ N(model; noise)
data ~ N(model; noise)
so. why not?
data ~ N(model; noise)
None
reference: Ambikasaran, DFM+ (2015)
None
reference: Ambikasaran, DFM+ (2015)
reference: DFM, Agol, Ambikasaran, Angus (2017); DFM (2018); DFM, Luger,
et al. (2021)
None
reference: Gordon, Agol, DFM (2020)
what’s next?
None
None
None
credit: Quang Tran
reference: Luger, DFM, Hedges (2021)
probabilistic inference 5
p(data|physics)
have: physics = > data
want: data = > physics
integral of the form f(physics) p(physics|data) dphysics
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
gradients!
dp(data|physics) / dphysics
automatic differentiation aka “backpropagation”
your model is just code
apply the chain rule
apply the chain rule over and over again . .
.
sounds silly?
it's not! (mostly)
None
None
what’s next?
None
jax.readthedocs.io
my approach to open source 6
None
[1] don’t underestimate users [2] build libraries, not (just) scripts
[3] teach by example
None
None
None
bringing open source practices to research more generally
None
None
None
None
what’s next? 7
7 [1] inference with stochastic or intractable models [2] what
can we do to better support open source in astrophysics
7
7 credit: Adrian Price-Whelan
many fundamental software packages have a shockingly small number of
maintainers.
a selection of some* CCA-supported software: * my apologies for
neglecting your favorites!
None
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS @ CCA