$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My research talk for CCA promotion
Search
Dan Foreman-Mackey
February 03, 2022
Science
1
790
My research talk for CCA promotion
A summary of what I've been up to for the past few years and where my research program is going.
Dan Foreman-Mackey
February 03, 2022
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
170
Open Software for Astrophysics, AAS241
dfm
2
570
Astronomical software
dfm
1
750
emcee-odi
dfm
1
690
Exoplanet population inference: a tutorial
dfm
3
480
Data-driven discovery in the astronomical time domain
dfm
6
740
TensorFlow for astronomers
dfm
6
840
How to find a transiting exoplanets
dfm
1
490
Long-period transiting exoplanets
dfm
1
330
Other Decks in Science
See All in Science
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
260
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
130
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
490
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
22k
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
230
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
Hakonwa-Quaternion
hiranabe
1
160
Featured
See All Featured
Evolving SEO for Evolving Search Engines
ryanjones
0
73
Context Engineering - Making Every Token Count
addyosmani
9
550
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
93
Amusing Abliteration
ianozsvald
0
69
The agentic SEO stack - context over prompts
schlessera
0
560
Git: the NoSQL Database
bkeepers
PRO
432
66k
Embracing the Ebb and Flow
colly
88
4.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
[SF Ruby Conf 2025] Rails X
palkan
0
620
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
89
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
410
Transcript
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS by Dan Foreman-Mackey
who am I? / / what’ve I been up to?
1
7 [1] solving Hard™ data analysis problems [2] enabling and
empowering astrophysicists
implementation.
data = > physics
open source software for astrophysics 2
why?
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
my open source contributions 3
None
gaussian processes 4
p(data|physics)
data ~ N(model; noise)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
data ~ N(model; noise)
data ~ N(model; noise)
so. why not?
data ~ N(model; noise)
None
reference: Ambikasaran, DFM+ (2015)
None
reference: Ambikasaran, DFM+ (2015)
reference: DFM, Agol, Ambikasaran, Angus (2017); DFM (2018); DFM, Luger,
et al. (2021)
None
reference: Gordon, Agol, DFM (2020)
what’s next?
None
None
None
credit: Quang Tran
reference: Luger, DFM, Hedges (2021)
probabilistic inference 5
p(data|physics)
have: physics = > data
want: data = > physics
integral of the form f(physics) p(physics|data) dphysics
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
gradients!
dp(data|physics) / dphysics
automatic differentiation aka “backpropagation”
your model is just code
apply the chain rule
apply the chain rule over and over again . .
.
sounds silly?
it's not! (mostly)
None
None
what’s next?
None
jax.readthedocs.io
my approach to open source 6
None
[1] don’t underestimate users [2] build libraries, not (just) scripts
[3] teach by example
None
None
None
bringing open source practices to research more generally
None
None
None
None
what’s next? 7
7 [1] inference with stochastic or intractable models [2] what
can we do to better support open source in astrophysics
7
7 credit: Adrian Price-Whelan
many fundamental software packages have a shockingly small number of
maintainers.
a selection of some* CCA-supported software: * my apologies for
neglecting your favorites!
None
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS @ CCA