Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My research talk for CCA promotion
Search
Dan Foreman-Mackey
February 03, 2022
Science
1
790
My research talk for CCA promotion
A summary of what I've been up to for the past few years and where my research program is going.
Dan Foreman-Mackey
February 03, 2022
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
160
Open Software for Astrophysics, AAS241
dfm
2
550
Astronomical software
dfm
1
740
emcee-odi
dfm
1
680
Exoplanet population inference: a tutorial
dfm
3
460
Data-driven discovery in the astronomical time domain
dfm
6
730
TensorFlow for astronomers
dfm
6
830
How to find a transiting exoplanets
dfm
1
470
Long-period transiting exoplanets
dfm
1
320
Other Decks in Science
See All in Science
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
120
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
660
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
400
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
670
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
370
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
200
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
320
機械学習 - 授業概要
trycycle
PRO
0
260
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
200
研究って何だっけ / What is Research?
ks91
PRO
1
140
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
480
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
130
Featured
See All Featured
Navigating Team Friction
lara
190
15k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Writing Fast Ruby
sferik
630
62k
Building an army of robots
kneath
306
46k
RailsConf 2023
tenderlove
30
1.3k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Balancing Empowerment & Direction
lara
5
710
Embracing the Ebb and Flow
colly
88
4.9k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Producing Creativity
orderedlist
PRO
348
40k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Transcript
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS by Dan Foreman-Mackey
who am I? / / what’ve I been up to?
1
7 [1] solving Hard™ data analysis problems [2] enabling and
empowering astrophysicists
implementation.
data = > physics
open source software for astrophysics 2
why?
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
my open source contributions 3
None
gaussian processes 4
p(data|physics)
data ~ N(model; noise)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
data ~ N(model; noise)
data ~ N(model; noise)
so. why not?
data ~ N(model; noise)
None
reference: Ambikasaran, DFM+ (2015)
None
reference: Ambikasaran, DFM+ (2015)
reference: DFM, Agol, Ambikasaran, Angus (2017); DFM (2018); DFM, Luger,
et al. (2021)
None
reference: Gordon, Agol, DFM (2020)
what’s next?
None
None
None
credit: Quang Tran
reference: Luger, DFM, Hedges (2021)
probabilistic inference 5
p(data|physics)
have: physics = > data
want: data = > physics
integral of the form f(physics) p(physics|data) dphysics
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
gradients!
dp(data|physics) / dphysics
automatic differentiation aka “backpropagation”
your model is just code
apply the chain rule
apply the chain rule over and over again . .
.
sounds silly?
it's not! (mostly)
None
None
what’s next?
None
jax.readthedocs.io
my approach to open source 6
None
[1] don’t underestimate users [2] build libraries, not (just) scripts
[3] teach by example
None
None
None
bringing open source practices to research more generally
None
None
None
None
what’s next? 7
7 [1] inference with stochastic or intractable models [2] what
can we do to better support open source in astrophysics
7
7 credit: Adrian Price-Whelan
many fundamental software packages have a shockingly small number of
maintainers.
a selection of some* CCA-supported software: * my apologies for
neglecting your favorites!
None
BUILDING THE SOFTWARE INFRASTRUCTURE FOR ASTROPHYSICS @ CCA