Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open Software for Astrophysics, AAS241
Search
Dan Foreman-Mackey
January 12, 2023
Science
2
530
Open Software for Astrophysics, AAS241
Slides for my plenary talk at the 241st American Astronomical Society meeting.
Dan Foreman-Mackey
January 12, 2023
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
140
My research talk for CCA promotion
dfm
1
770
Astronomical software
dfm
1
730
emcee-odi
dfm
1
660
Exoplanet population inference: a tutorial
dfm
3
450
Data-driven discovery in the astronomical time domain
dfm
6
710
TensorFlow for astronomers
dfm
6
810
How to find a transiting exoplanets
dfm
1
460
Long-period transiting exoplanets
dfm
1
310
Other Decks in Science
See All in Science
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
330
科学で迫る勝敗の法則(電気学会・SICE若手セミナー講演 2024年12月) / The principle of victory discovered by science (Lecture for young academists in IEEJ-SICE))
konakalab
0
110
Accelerated Computing for Climate forecast
inureyes
PRO
0
110
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
500
統計学入門講座 第3回スライド
techmathproject
0
110
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
150
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
学術講演会中央大学学員会府中支部
tagtag
0
290
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
400
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
470
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
210
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
110
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Facilitating Awesome Meetings
lara
54
6.5k
Fireside Chat
paigeccino
37
3.5k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
850
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
The Cost Of JavaScript in 2023
addyosmani
51
8.6k
Why Our Code Smells
bkeepers
PRO
337
57k
Transcript
OPEN SOFTWARE FOR ASTROPHYSICS Dan Foreman-Mackey
None
case study: Gaussian Processes
AAS 225 / 2015 / Seattle AAS 231 / 2018
/ National Harbor
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022) ignoring correlated noise accounting for
correlated noise
reference: Aigrain & DFM (2022)
a Gaussian Process is a drop - in replacement for
chi - squared
more details: Aigrain & Foreman-Mackey (2023) arXiv:2209.08940
7 [1] model building [2] computational cost
k(tn , tm ; θ) “kernel” or “covariance”
None
import george import celerite import tinygp
my f i rst try: george 1
import numpy as np def log_likelihood(params, x, diag, r) :
K = build_kernel_matrix(params, x, diag) gof = r.T @ np.linalg.solve(K, r) norm = np.linalg.slogdet(K)[1] return -0.5 * (gof + norm)
import numpy as np def log_likelihood(params, x, diag, r) :
K = build_kernel_matrix(params, x, diag) gof = r.T @ np.linalg.solve(K, r) norm = np.linalg.slogdet(K)[1] return -0.5 * (gof + norm)
k(tn , tm ; θ) “kernel” or “covariance”
from george.kernels import * k1 = 1.5 * ExpSquaredKernel(2.3) k2
= 5.5 * Matern32Kernel(0.1) kernel = 0.5 * (k1 + k2)
from george import GP gp = GP(kernel) gp.compute(x, yerr) gp.log_likelihood(y)
from george import GP gp = GP(kernel) gp.compute(x, yerr) gp.log_likelihood(y)
gp.f i t(y) ???
the astronomical Python ecosystem + MANY MORE!
* API design (library vs scripts) * don’t reinvent the
wheel
None
faster: celerite* 2 * yes, that truly is how you
pronounce it…
import numpy as np def log_likelihood(params, x, diag, r) :
K = build_kernel_matrix(params, x, diag) gof = r.T @ np.linalg.solve(K, r) norm = np.linalg.slogdet(K)[1] return -0.5 * (gof + norm)
import numpy as np def log_likelihood(params, x, diag, r) :
K = build_kernel_matrix(params, x, diag) gof = r.T @ np.linalg.solve(K, r) norm = np.linalg.slogdet(K)[1] return -0.5 * (gof + norm)
None
“semi/quasi - separable” matrices
102 103 104 105 number of data points [N] 10
5 10 4 10 3 10 2 10 1 100 computational cost [seconds] 1 2 4 8 16 32 64 128 256 direct O(N) 100 101 number o reference: DFM, Agol, Ambikasaran, Angus (2017)
102 103 104 105 number of data points [N] 10
4 10 3 10 2 10 1 100 computational cost [seconds] 1 2 4 8 16 32 64 128 256 O(N) 100 101 number o reference: DFM, Agol, Ambikasaran, Angus (2017)
None
+
+ + vs
* interdisciplinary collaboration * importance of implementation
7 [1] 1 (ish) dimensional input [2] specif i c
type of kernel restrictions:
modern infrastructure: tinygp 3
what’s missing from the astronomical Python ecosystem?
7 [1] differentiable programming [2] hardware acceleration
the broader numerical computing Python ecosystem + SO MANY MORE!
jax.readthedocs.io
import numpy as np def linear_least_squares(x, y) : A =
np.vander(x, 2) return np.linalg.lstsq(A, y)[0]
import jax.numpy as jnp def linear_least_squares(x, y) : A =
jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
import jax.numpy as jnp @jax.jit def linear_least_squares(x, y) : A
= jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
None
tinygp.readthedocs.io
the broader numerical computing Python ecosystem + SO MANY MORE!
* I <3 JAX * don’t reinvent the wheel
the why & how of open software in astrophysics
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
None
None
None
None
takeaways
open software is foundational to astrophysics research let’s consider &
discuss interface design and user interaction leverage existing infrastructure & learn when to start fresh
get in touch! dfm.io github.com/dfm
None