Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open software for Astronomical Data Analysis
Search
Dan Foreman-Mackey
February 28, 2023
Science
0
150
Open software for Astronomical Data Analysis
@ NASA Goddard
Dan Foreman-Mackey
February 28, 2023
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open Software for Astrophysics, AAS241
dfm
2
540
My research talk for CCA promotion
dfm
1
780
Astronomical software
dfm
1
730
emcee-odi
dfm
1
670
Exoplanet population inference: a tutorial
dfm
3
460
Data-driven discovery in the astronomical time domain
dfm
6
720
TensorFlow for astronomers
dfm
6
810
How to find a transiting exoplanets
dfm
1
470
Long-period transiting exoplanets
dfm
1
310
Other Decks in Science
See All in Science
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
150
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
430
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1k
Transport information Geometry: Current and Future II
lwc2017
0
180
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
610
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
960
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.3k
Celebrate UTIG: Staff and Student Awards 2025
utig
0
130
Explanatory material
yuki1986
0
390
Symfony Console Facelift
chalasr
2
460
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
290
データマイニング - グラフデータと経路
trycycle
PRO
1
210
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
820
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Producing Creativity
orderedlist
PRO
347
40k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Pragmatic Product Professional
lauravandoore
36
6.8k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
BBQ
matthewcrist
89
9.8k
The Invisible Side of Design
smashingmag
301
51k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Transcript
OPEN SOFTWARE FOR ASTRONOMICAL DATA ANALYSIS by Dan Foreman-Mackey
None
open software for astrophysics 0
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
7
many fundamental software packages have a shockingly small number of
maintainers.
7 credit: Adrian Price-Whelan
* astronomical software can be very high impact * we
should think about career trajectories & mechanisms for supporting this work
None
case study: gaussian processes 1
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022) ignoring correlated noise accounting for
correlated noise
reference: Aigrain & DFM (2022)
a Gaussian Process is a drop - in replacement for
chi - squared
more details: Aigrain & Foreman-Mackey (2023) arXiv:2209.08940
None
7 [1] model building [2] computational cost
reference: Luger, DFM, Hedges (2021)
[2] computational cost
7 [1] bigger/better computers [2] exploit matrix structure [3] approximate
linear algebra [4] etc.
1 3 2
None
None
1 3 2
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Gordon, Agol, DFM (2020) / tinygp.readthedocs.io
* a Gaussian Process is a drop - in replacement
for chi squared * model building & computational cost are (solvable!) challenges * you should check out tinygp!
case study: probabilistic inference 2
have: physics = > data
want: data = > physics
7 [1] physical models [2] legacy code
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
3.0 3.5 4.0 4.5 5.0 Wavelength [micron] 2.05 2.10 2.15
2.20 2.25 2.30 Transit Depth [%] Alderson et al. 2023 Joint Fit (N = 50) reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in prep) WASP-39b / NIRSpec
reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in
prep) showing 23 of the 404 parameters (8 per channel + 4 shared)
how?
d(physics = > data) / dphysics
automatic differentiation aka “backpropagation”
None
7 [1] physical models [2] legacy code
7 [1] domain - specif i c libraries [2] emulation
None
* gradient - based inference using autodiff can improve eff
i ciency * there are practical challenges with these methods in astro * of interest: domain - specif i c libraries & emulation
aside: JAX 3
None
import numpy as np def linear_least_squares(x, y) : A =
np.vander(x, 2) return np.linalg.lstsq(A, y)[0]
import jax.numpy as jnp def linear_least_squares(x, y) : A =
jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
None
open research practices 4
None
None
None
None
None
None
None
open software is foundational to astrophysics research there are opportunities
at the interface of astro & applied f i elds there are ways you can participate & benef i t right away
7 I want to chat about… [1] your data analysis
problems [2] building astronomical software [3] writing documentation & tutorials
get in touch! dfm.io github.com/dfm