Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open software for Astronomical Data Analysis
Search
Dan Foreman-Mackey
February 28, 2023
Science
0
120
Open software for Astronomical Data Analysis
@ NASA Goddard
Dan Foreman-Mackey
February 28, 2023
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open Software for Astrophysics, AAS241
dfm
2
480
My research talk for CCA promotion
dfm
1
750
Astronomical software
dfm
1
700
emcee-odi
dfm
1
610
Exoplanet population inference: a tutorial
dfm
3
430
Data-driven discovery in the astronomical time domain
dfm
6
690
TensorFlow for astronomers
dfm
6
760
How to find a transiting exoplanets
dfm
1
450
Long-period transiting exoplanets
dfm
1
300
Other Decks in Science
See All in Science
Mechanistic Interpretability の紹介
sohtakahashi
0
480
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
380
JSol'Ex : traitement d'images solaires en Java
melix
0
130
ベイズのはなし
techmathproject
0
380
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.1k
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
150
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
180
ICRA2024 速報
rpc
3
5.6k
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
660
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
200
butterfly_effect/butterfly_effect_in-house
florets1
1
130
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
Why Our Code Smells
bkeepers
PRO
335
57k
Side Projects
sachag
452
42k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
GraphQLとの向き合い方2022年版
quramy
44
13k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Building Your Own Lightsaber
phodgson
104
6.2k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
RailsConf 2023
tenderlove
29
970
Measuring & Analyzing Core Web Vitals
bluesmoon
5
210
Transcript
OPEN SOFTWARE FOR ASTRONOMICAL DATA ANALYSIS by Dan Foreman-Mackey
None
open software for astrophysics 0
credit: Adrian Price-Whelan / / data: SAO/NASA ADS
7
many fundamental software packages have a shockingly small number of
maintainers.
7 credit: Adrian Price-Whelan
* astronomical software can be very high impact * we
should think about career trajectories & mechanisms for supporting this work
None
case study: gaussian processes 1
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022)
reference: Aigrain & DFM (2022) ignoring correlated noise accounting for
correlated noise
reference: Aigrain & DFM (2022)
a Gaussian Process is a drop - in replacement for
chi - squared
more details: Aigrain & Foreman-Mackey (2023) arXiv:2209.08940
None
7 [1] model building [2] computational cost
reference: Luger, DFM, Hedges (2021)
[2] computational cost
7 [1] bigger/better computers [2] exploit matrix structure [3] approximate
linear algebra [4] etc.
1 3 2
None
None
1 3 2
°0.6 °0.3 0.0 0.3 0.6 raw [ppt] 0 5 10
15 20 25 time [days] °0.30 °0.15 0.00 de-trended [ppt] N = 1000 reference: DFM+ (2017)
reference: Gordon, Agol, DFM (2020) / tinygp.readthedocs.io
* a Gaussian Process is a drop - in replacement
for chi squared * model building & computational cost are (solvable!) challenges * you should check out tinygp!
case study: probabilistic inference 2
have: physics = > data
want: data = > physics
7 [1] physical models [2] legacy code
None
number of parameters patience required a few tenish not outrageously
many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many reference: DFM (priv. comm.)
number of parameters patience required emcee a few tenish not
outrageously many how things should be reference: DFM (priv. comm.)
None
None
None
None
3.0 3.5 4.0 4.5 5.0 Wavelength [micron] 2.05 2.10 2.15
2.20 2.25 2.30 Transit Depth [%] Alderson et al. 2023 Joint Fit (N = 50) reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in prep) WASP-39b / NIRSpec
reference: Soichiro Hattori, Ruth Angus, DFM, . . . (in
prep) showing 23 of the 404 parameters (8 per channel + 4 shared)
how?
d(physics = > data) / dphysics
automatic differentiation aka “backpropagation”
None
7 [1] physical models [2] legacy code
7 [1] domain - specif i c libraries [2] emulation
None
* gradient - based inference using autodiff can improve eff
i ciency * there are practical challenges with these methods in astro * of interest: domain - specif i c libraries & emulation
aside: JAX 3
None
import numpy as np def linear_least_squares(x, y) : A =
np.vander(x, 2) return np.linalg.lstsq(A, y)[0]
import jax.numpy as jnp def linear_least_squares(x, y) : A =
jnp.vander(x, 2) return jnp.linalg.lstsq(A, y)[0]
None
open research practices 4
None
None
None
None
None
None
None
open software is foundational to astrophysics research there are opportunities
at the interface of astro & applied f i elds there are ways you can participate & benef i t right away
7 I want to chat about… [1] your data analysis
problems [2] building astronomical software [3] writing documentation & tutorials
get in touch! dfm.io github.com/dfm