Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ不足に数理モデルで立ち向かう / Japan.R 2023
Search
森下光之助
December 02, 2023
Marketing & SEO
10
5.4k
データ不足に数理モデルで立ち向かう / Japan.R 2023
2023年12月2日に行われたJapan.R 2023での発表資料です
https://japanr.connpass.com/event/302622/
森下光之助
December 02, 2023
Tweet
Share
More Decks by 森下光之助
See All by 森下光之助
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
540
tidymodelsによるtidyな生存時間解析 / Japan.R2024
dropout009
2
1k
回帰分析ではlm()ではなくestimatr::lm_robust()を使おう / TokyoR100
dropout009
56
10k
Counterfactual Explanationsで機械学習モデルを解釈する / TokyoR99
dropout009
3
3k
『機械学習を解釈する技術』の紹介 / Devsumi2022
dropout009
4
3.7k
シンプルな数理モデルでビジネス課題を解決する / Japan.R 2021
dropout009
2
6.4k
テレビCMのユニークリーチを最適化する / PyData.Tokyo24
dropout009
0
1.8k
Accumulated Local Effects(ALE)で機械学習モデルを解釈する / TokyoR95
dropout009
3
9.1k
データ分析手法をシミュレーションを通して理解する / stapy74
dropout009
3
1.8k
Other Decks in Marketing & SEO
See All in Marketing & SEO
How to Use AI to harness Google APIs
jonathonrobertsseo
0
720
YouTube Keyword Research 2.0
philnottingham
0
330
Keynote: SEO is Dead Long Live SEO - Pubcon Austin 2025
ryanjones
1
110
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
120
Cómo sobrevivir al apocalipsis zombi de AI Overviews gracias a Google Discover - Territorio DSM 25
clarasoteras
0
150
JAWS-UG のご紹介 - JAWS-UG沖縄 AWS 初心者さん、ようこそ! in うるま
awsjcpm
0
120
How to Optimise 3,500 Product Descriptions for eCommerce in One Day Using ChatGPT & Make
katarinadahlin
PRO
1
1.3k
Data Driven SEO: A Framework Based Approach
knagayama
0
290
Momentum: how publishing and updating frequency impact SEO - BrightonSEO April 2025
pontusvippelius
0
270
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
2.1k
The lazy SEO's guide: practical automations for great results
frankvandijk
0
120
International SEO Forecasting - How to Determine the Investment Needed and the Potential Returns When Entering New Markets (James Brockbank, International Search Summit 2024)
brockbankjames
PRO
0
910
Featured
See All Featured
How to Ace a Technical Interview
jacobian
279
23k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Designing Experiences People Love
moore
142
24k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Navigating Team Friction
lara
188
15k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Rails Girls Zürich Keynote
gr2m
95
14k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
2023/12/02 Japan.R 2023 #JapanR @dropout009
REVISIO CDO X: @dropout009 Speaker Deck: dropout009 Blog: https://dropout009.hatenablog.com/
None
None
CM • • CM ⾒ • CM
• GRP TRP • CM ⾒ • CM ⾒ •
• CM 1 ⾒ • CM 2 1 2 3 4 5 A 1 0 1 0 1 B 0 1 0 1 0 C 1 1 1 0 1 D 0 0 1 0 0 E 0 0 0 0 0 2 (40%) 4 (80%) 7 (140%) 8 (160%) 10 (200%) 2 (40%) 3 (60%) 4 (80%) 4 (80%) 4 (80%)
• • CM × 1% 1 1
• 206% 10 2,060 69.7%
• • 0 0 頻 ⾒ 100% lm(y ~ 0
+ x) lm(y ~ 0 + log1p(x))
• •
None
l 𝑔 l CM 𝐹 Pr 𝐹 = 𝑓 ∣
𝑔 l CM 1 ⾒ 𝑟 𝑔 = Pr 𝐹 ≥ 1 ∣ 𝑔 = 1 − Pr 𝐹 = 0 ∣ 𝑔 Pr 𝐹 = 𝑓 ∣ 𝑔 𝑟 𝑔 CM
l Poisson 𝑓 𝜆 = 1 Γ 𝑓 + 1
𝜆!𝑒"# l 𝜆 𝑔 𝜆 = 𝑔 𝑟 𝑔 = 1 − Pr 𝐹 = 0 ∣ 𝑔 = 1 − 1 Γ 0 + 1 𝑔$𝑒"% = 1 − 𝑒"% dpois(f, lambda) Poisson(𝑓 ∣ 𝜆 = 5) Poisson(𝑓 ∣ 𝜆 = 3) 1 - dpois(0, g) Poisson(𝑓 ∣ 𝜆 = 2)
l 𝑟 𝑔 = 1 − 𝑒"%
l CM ⾒ CM CM CM CM Poisson(𝑓 ∣ 𝜆
= 2.06) CM
None
l CM CM CM l CM 𝜆 CM 𝜆 CM
⾒ 𝜆 Poisson(𝑓 ∣ 𝜆 = 2) Poisson(𝑓 ∣ 𝜆 = 3) Poisson(𝑓 ∣ 𝜆 = 5)
l ⾒ ⾒ 𝜆 l 𝜆 頻 𝜆 l 𝜆
Gamma 𝜆 ∣ 𝜈, 𝜈 𝜇 = 𝜈 𝜇 & Γ 𝜈 𝜆&"'𝑒" & (# E 𝜆 = 𝜇 𝜆 dgamma(nu, nu / mu) Gamma 𝜆 ∣ 1, 1 2 Gamma 𝜆 ∣ 4, 4 2 Gamma 𝜆 ∣ 16, 16 2 𝜆 𝜆
l 𝜆 ⾒ 𝜆 Pr 𝐹 = 𝑓 ∣ 𝜇,
𝜈 = ; $ ) Pr 𝐹 = 𝑓 ∣ 𝜆 𝑝 𝜆 𝜇, 𝜈 𝑑𝜆 = ; $ ) Poisson 𝑓 ∣ 𝜆 Gamma 𝜆 𝜈, 𝜈 𝜇 𝑑𝜆 = ; $ ) 1 Γ 𝑓 + 1 𝜆!𝑒"# 𝜈 𝜇 & Γ 𝜈 𝜆&"'𝑒" & (# 𝑑𝜆 = 𝜈 𝜇 & Γ 𝑓 + 1 Γ 𝜈 ; $ ) 𝜆&*!"'𝑒" &"( ( # 𝑑𝜆 = 𝜈 𝜇 & Γ 𝑓 + 1 Γ 𝜈 Γ 𝜈 + 𝑓 𝜈 + 𝜇 𝜇 &*! ; $ ) 𝜈 + 𝜇 𝜇 &*! Γ 𝜈 + 𝑓 𝜆&*!"'𝑒" &*( ( # 𝑑𝜆 = Γ 𝜈 + 𝑓 Γ 𝑓 + 1 Γ 𝜈 𝜈 𝜈 + 𝜇 & 𝜇 𝜈 + 𝜇 ! = , ! " Gamma 𝜆 𝜈 + 𝑓, 𝜈 + 𝜇 𝜇 𝑑𝜆 = 1
l ⾒ Negative Binomial Distribution; NBD NB 𝑓 𝜇, 𝜈
= Γ 𝜈 + 𝑓 Γ 𝑓 + 1 Γ 𝜈 𝜈 𝜈 + 𝜇 & 𝜇 𝜈 + 𝜇 ! NB 𝑓 2.06,1 NB 𝑓 2.06,3 NB 𝑓 2.06,10 dnbinom(f, mu = mu, size = nu)
l ⾒ 𝑟 𝑔, 𝜈 = 1 − Pr 𝐹
= 0 ∣ 𝑔, 𝜈 = 1 − Γ 𝜈 + 0 Γ 0 + 1 Γ 𝜈 𝜈 𝜈 + 𝑔 & 𝑔 𝜈 + 𝑔 $ = 1 − 𝜈 𝜈 + 𝑔 & l 𝜈 1 - dnbinom(0, mu = g, size = nu) 𝑟 𝑔, 1 𝑟 𝑔, 3 𝑟 𝑔, 10
l 𝑟 𝑔, 𝜈 𝜈 𝜈 l 𝑟+ 𝑔+ ̂
𝜈 ̂ 𝜈 = argmin & 1 − 𝜈 𝜈 + 𝑔+ & − 𝑟′ l ̂ 𝜈 𝑟 𝑔, ̂ 𝜈 = 1 − ̂ 𝜈 ̂ 𝜈 + 𝑔 , & CM CM
l 1 ⾒ CM 3 CM ⾒ l CM 𝑓
⾒ 𝑓 + l 𝑓 + 𝑟!* 𝑔, 𝜈 = Pr 𝐹 ≥ 𝑓 ∣ 𝑔, 𝑣 = 1 − Pr 𝐹 ≤ 𝑓 − 1 ∣ 𝑔, 𝜈 = 1 − E !!-$ !"' Γ 𝜈 + 𝑓+ Γ 𝑓+ + 1 Γ 𝜈 𝜈 𝜈 + 𝑔 & 𝑔 𝜈 + 𝑔 !! 𝑓 𝑓 + 𝑟!" 𝑟#" 𝑟$" 1 - pnbinom(f - 1, mu = g, size = nu)
None
l l l l ⾒
• Goerg, Georg M. "Estimating reach curves from one data
point." (2014).