Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ不足に数理モデルで立ち向かう / Japan.R 2023
Search
森下光之助
December 02, 2023
Marketing & SEO
11
5.5k
データ不足に数理モデルで立ち向かう / Japan.R 2023
2023年12月2日に行われたJapan.R 2023での発表資料です
https://japanr.connpass.com/event/302622/
森下光之助
December 02, 2023
Tweet
Share
More Decks by 森下光之助
See All by 森下光之助
『ビジネス課題を解決する技術』を出版しました / CA DATA Night #7
dropout009
1
16
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
640
tidymodelsによるtidyな生存時間解析 / Japan.R2024
dropout009
2
1.1k
回帰分析ではlm()ではなくestimatr::lm_robust()を使おう / TokyoR100
dropout009
66
11k
Counterfactual Explanationsで機械学習モデルを解釈する / TokyoR99
dropout009
3
3.1k
『機械学習を解釈する技術』の紹介 / Devsumi2022
dropout009
4
3.9k
シンプルな数理モデルでビジネス課題を解決する / Japan.R 2021
dropout009
2
6.6k
テレビCMのユニークリーチを最適化する / PyData.Tokyo24
dropout009
0
1.8k
Accumulated Local Effects(ALE)で機械学習モデルを解釈する / TokyoR95
dropout009
3
9.6k
Other Decks in Marketing & SEO
See All in Marketing & SEO
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
170
SEO Para Visibilidad & Reconocimiento de Marca
aleyda
1
230
YouTube Keyword Research 2.0
philnottingham
0
370
Las 8 cosas que las marcas deberían estar haciendo
manuchat
0
180
How to win in AI Search with Ahrefs
andreitit
0
1.5k
What log files tell about your visibility in AI Search
oncrawl
0
200
AI Search: Where are we now and how to succeed - #SEOsummit Brasil
aleyda
0
400
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.2k
マーケティング研修サービス なぞるLearning
nazoru
PRO
0
300
SEO-Meetup-Hamburg - PageSpeed von Max Böhme - 2025-04-28
maxboehme
2
310
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
Josh Blyskal | Profound | I analyzed 40 million search results, here's what I found
joshbly
1
3.5k
Featured
See All Featured
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Speed Design
sergeychernyshev
33
1.4k
It's Worth the Effort
3n
187
29k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Paper Plane
katiecoart
PRO
0
44k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
90
Transcript
2023/12/02 Japan.R 2023 #JapanR @dropout009
REVISIO CDO X: @dropout009 Speaker Deck: dropout009 Blog: https://dropout009.hatenablog.com/
None
None
CM • • CM ⾒ • CM
• GRP TRP • CM ⾒ • CM ⾒ •
• CM 1 ⾒ • CM 2 1 2 3 4 5 A 1 0 1 0 1 B 0 1 0 1 0 C 1 1 1 0 1 D 0 0 1 0 0 E 0 0 0 0 0 2 (40%) 4 (80%) 7 (140%) 8 (160%) 10 (200%) 2 (40%) 3 (60%) 4 (80%) 4 (80%) 4 (80%)
• • CM × 1% 1 1
• 206% 10 2,060 69.7%
• • 0 0 頻 ⾒ 100% lm(y ~ 0
+ x) lm(y ~ 0 + log1p(x))
• •
None
l 𝑔 l CM 𝐹 Pr 𝐹 = 𝑓 ∣
𝑔 l CM 1 ⾒ 𝑟 𝑔 = Pr 𝐹 ≥ 1 ∣ 𝑔 = 1 − Pr 𝐹 = 0 ∣ 𝑔 Pr 𝐹 = 𝑓 ∣ 𝑔 𝑟 𝑔 CM
l Poisson 𝑓 𝜆 = 1 Γ 𝑓 + 1
𝜆!𝑒"# l 𝜆 𝑔 𝜆 = 𝑔 𝑟 𝑔 = 1 − Pr 𝐹 = 0 ∣ 𝑔 = 1 − 1 Γ 0 + 1 𝑔$𝑒"% = 1 − 𝑒"% dpois(f, lambda) Poisson(𝑓 ∣ 𝜆 = 5) Poisson(𝑓 ∣ 𝜆 = 3) 1 - dpois(0, g) Poisson(𝑓 ∣ 𝜆 = 2)
l 𝑟 𝑔 = 1 − 𝑒"%
l CM ⾒ CM CM CM CM Poisson(𝑓 ∣ 𝜆
= 2.06) CM
None
l CM CM CM l CM 𝜆 CM 𝜆 CM
⾒ 𝜆 Poisson(𝑓 ∣ 𝜆 = 2) Poisson(𝑓 ∣ 𝜆 = 3) Poisson(𝑓 ∣ 𝜆 = 5)
l ⾒ ⾒ 𝜆 l 𝜆 頻 𝜆 l 𝜆
Gamma 𝜆 ∣ 𝜈, 𝜈 𝜇 = 𝜈 𝜇 & Γ 𝜈 𝜆&"'𝑒" & (# E 𝜆 = 𝜇 𝜆 dgamma(nu, nu / mu) Gamma 𝜆 ∣ 1, 1 2 Gamma 𝜆 ∣ 4, 4 2 Gamma 𝜆 ∣ 16, 16 2 𝜆 𝜆
l 𝜆 ⾒ 𝜆 Pr 𝐹 = 𝑓 ∣ 𝜇,
𝜈 = ; $ ) Pr 𝐹 = 𝑓 ∣ 𝜆 𝑝 𝜆 𝜇, 𝜈 𝑑𝜆 = ; $ ) Poisson 𝑓 ∣ 𝜆 Gamma 𝜆 𝜈, 𝜈 𝜇 𝑑𝜆 = ; $ ) 1 Γ 𝑓 + 1 𝜆!𝑒"# 𝜈 𝜇 & Γ 𝜈 𝜆&"'𝑒" & (# 𝑑𝜆 = 𝜈 𝜇 & Γ 𝑓 + 1 Γ 𝜈 ; $ ) 𝜆&*!"'𝑒" &"( ( # 𝑑𝜆 = 𝜈 𝜇 & Γ 𝑓 + 1 Γ 𝜈 Γ 𝜈 + 𝑓 𝜈 + 𝜇 𝜇 &*! ; $ ) 𝜈 + 𝜇 𝜇 &*! Γ 𝜈 + 𝑓 𝜆&*!"'𝑒" &*( ( # 𝑑𝜆 = Γ 𝜈 + 𝑓 Γ 𝑓 + 1 Γ 𝜈 𝜈 𝜈 + 𝜇 & 𝜇 𝜈 + 𝜇 ! = , ! " Gamma 𝜆 𝜈 + 𝑓, 𝜈 + 𝜇 𝜇 𝑑𝜆 = 1
l ⾒ Negative Binomial Distribution; NBD NB 𝑓 𝜇, 𝜈
= Γ 𝜈 + 𝑓 Γ 𝑓 + 1 Γ 𝜈 𝜈 𝜈 + 𝜇 & 𝜇 𝜈 + 𝜇 ! NB 𝑓 2.06,1 NB 𝑓 2.06,3 NB 𝑓 2.06,10 dnbinom(f, mu = mu, size = nu)
l ⾒ 𝑟 𝑔, 𝜈 = 1 − Pr 𝐹
= 0 ∣ 𝑔, 𝜈 = 1 − Γ 𝜈 + 0 Γ 0 + 1 Γ 𝜈 𝜈 𝜈 + 𝑔 & 𝑔 𝜈 + 𝑔 $ = 1 − 𝜈 𝜈 + 𝑔 & l 𝜈 1 - dnbinom(0, mu = g, size = nu) 𝑟 𝑔, 1 𝑟 𝑔, 3 𝑟 𝑔, 10
l 𝑟 𝑔, 𝜈 𝜈 𝜈 l 𝑟+ 𝑔+ ̂
𝜈 ̂ 𝜈 = argmin & 1 − 𝜈 𝜈 + 𝑔+ & − 𝑟′ l ̂ 𝜈 𝑟 𝑔, ̂ 𝜈 = 1 − ̂ 𝜈 ̂ 𝜈 + 𝑔 , & CM CM
l 1 ⾒ CM 3 CM ⾒ l CM 𝑓
⾒ 𝑓 + l 𝑓 + 𝑟!* 𝑔, 𝜈 = Pr 𝐹 ≥ 𝑓 ∣ 𝑔, 𝑣 = 1 − Pr 𝐹 ≤ 𝑓 − 1 ∣ 𝑔, 𝜈 = 1 − E !!-$ !"' Γ 𝜈 + 𝑓+ Γ 𝑓+ + 1 Γ 𝜈 𝜈 𝜈 + 𝑔 & 𝑔 𝜈 + 𝑔 !! 𝑓 𝑓 + 𝑟!" 𝑟#" 𝑟$" 1 - pnbinom(f - 1, mu = g, size = nu)
None
l l l l ⾒
• Goerg, Georg M. "Estimating reach curves from one data
point." (2014).