Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Feature Store in DRIVE CHART
Search
Ryosuke Kamesawa
November 18, 2020
Technology
0
61
Feature Store in DRIVE CHART
DRIVE CHARTにおいてFeature Storeと呼ばれる特徴量管理システムを内製、導入した経緯や効果について紹介します。
Ryosuke Kamesawa
November 18, 2020
Tweet
Share
More Decks by Ryosuke Kamesawa
See All by Ryosuke Kamesawa
推論エンジンMAXの紹介
emakryo
1
550
ニューラルネットワークの量子化手法の紹介
emakryo
3
3.4k
MediaPipeの紹介
emakryo
0
75
Customizing Cargo for Cross Compiling
emakryo
0
37
Feature StoreをRustで実装した話
emakryo
0
47
なぜRustか?
emakryo
0
46
rustdef: Rust on Jupyter Notebook
emakryo
0
42
Cargo-makeを使ってみた
emakryo
0
460
Machine Learning on Graph Data @ICML2019
emakryo
0
38
Other Decks in Technology
See All in Technology
Axon Frameworkのイベントストアを独自拡張した話
zozotech
PRO
0
220
ECS組み込みのBlue/Greenデプロイを動かしてELB側の動きを観察してみる
yuki_ink
3
370
なぜThrottleではなくDebounceだったのか? 700並列リクエストと戦うサーバーサイド実装のすべて
yoshiori
13
4.9k
国産クラウドを支える設計とチームの変遷 “技術・組織・ミッション”
kazeburo
4
5.7k
レガシーシステム刷新における TypeSpec スキーマ駆動開発のすゝめ
tsukuha
0
200
Perlの生きのこり - YAPC::Fukuoka 2025
kfly8
0
600
LINEスキマニ/LINEバイトにおけるバックエンド開発
lycorptech_jp
PRO
0
340
AIを前提に、業務を”再構築”せよ IVRyの9ヶ月にわたる挑戦と未来の働き方 (BTCONJP2025)
yueda256
1
790
Tomcatが起動しない!?SecureRandomと乱数デバイスの罠
fujikawa8
1
110
[CV勉強会@関東 ICCV2025] WoTE: End-to-End Driving with Online Trajectory Evaluation via BEV World Model
shinkyoto
0
290
自然言語でAPI作業を片付ける!「Postman Agent Mode」
nagix
0
110
はじめての OSS コントリビューション 〜小さな PR が世界を変える〜
chiroito
4
350
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The Invisible Side of Design
smashingmag
302
51k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
RailsConf 2023
tenderlove
30
1.3k
Balancing Empowerment & Direction
lara
5
760
Git: the NoSQL Database
bkeepers
PRO
432
66k
Making Projects Easy
brettharned
120
6.5k
Done Done
chrislema
186
16k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Documentation Writing (for coders)
carmenintech
76
5.1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Transcript
2020.10.29 Ryosuke Kamesawa 株式会社 Mobility Technologies Feature Store in DRIVE
CHART
2 亀澤諒亮 / Ryosuke Kamesawa - DeNA18新卒 - AI創薬: 2018/04
~ 2019/09 - グラフML - CHART: 2019/10 ~ (MoT 2020/04 ~) - エッジML、MLOps - 趣味とか - Rust https://github.com/emakryo/rustdef - 竸プロ (MoT #雑談_競技プログラミング) - ボルダリング 自己紹介
3 Outline 01|Feature Storeとは 02|事例の紹介 03|OSSの紹介 04|DRIVE CHART Feature Store
4 中央集約的な特徴量管理システム - 最近の機械学習システムの多くが大規模、複雑化 - データソース、特徴量、モデルの組み合わせが複数存在 - 問題点 - 開発環境と本番環境の違いによるデグレ
- モデル開発からデプロイまでが長期間化 - デプロイ後の検証が困難 - これらを解消する手段としてFeature Storeと 呼ばれるものを用意するケースが増えてきている Feature Store とは https://www.featurestore.org
5 - どこまでをFeature Storeと呼ぶかは結構曖昧 - APIやETL(前処理)のワーカーなどを含むこともあれば 特徴量保存のストレージだけを指すことも - 機能、特色 -
特徴量の保存/取得/共有 - Online/Offlineで共通のAPI - Online: 推論、本番用、高速小容量 - Offline: 学習、検証用、低速大容量 - APIを通したfeature engineering とmodel training の分離 - 共通の特徴量の再利用、再現性の担保 - Time travel: 特定の時点の特徴量の取得 Feature Store とは
6 - 各社事例 - Michelangelo (Uber) - Zipline (Airbnb) -
Comcast - and more https://www.featurestore.org/ - OSS - Hopsworks - Feast (GoJek/Google) - SaaS - Tecton https://www.tecton.ai/blog/what-is-a-feature-store/ 事例・OSS
7 Uberの機械学習パイプライン Michelangelo https://eng.uber.com/michelangelo-machine-learning-platform/
8 Uberの機械学習パイプライン Michelangelo https://eng.uber.com/michelangelo-machine-learning-platform/ Feature Store
9 Uberの機械学習パイプライン Michelangelo https://eng.uber.com/michelangelo-machine-learning-platform/ 特徴量取得・前処理は 専用DSLを利用
10 AirBnBのデータ管理プラットフォーム(特徴量計算エンジン) - 宣言的な特徴量計算DSL - イベントデータ(時系列) Zipline https://www.topbots.com/zipline-data-management-framework-by-airbnb/
11 AIアシスタントのためのMLパイプライン - Online/Offline Feature Store - 特徴量生成パイプライン - Streaming
/ On-Demand Comcast https://www.slideshare.net/databricks/operationalizing-machine-learningmanaging-pro venance-from-raw-data-to-predictions-with-nabeel-sarwar
12 シンプルなFeature Store OSS - Online/Offline - Historical retrieval -
Python / Java / Go SDK Feast https://docs.feast.dev/user-guide/architecture
13 For data engineer Feast - Python example
14 For data scientist Feast - Python example
15 機械学習プラットフォームOSS - 多機能 - ユーザー管理 - クラスタ管理 - 管理UI
- Notebook管理 - Feature Store Hopsworks https://hopsworks.readthedocs.io/en/stable/featurestore/guides/featurestore.html
16 - Online/Offline store - On-demand/cached features - Time travel
(w/ Apache Hudi) - Python SDK / Scale SDK / SparkSQL Hopsworks Feature Store https://hopsworks.readthedocs.io/en/stable/featurestore/guides/featurestore.html
17 DRIVE CHART Feature Store
18 - 生データ(ドライブレコーダーから取得) - センサーデータ(加速度、GPS、etc) - エッジ推論データ(ドライバー顔ランドマーク、前方物体検出、etc) - AWS EFS上に生データをCSVで保存
- 特徴量(前処理済データ)生成はデータサイエンティストが都度実行 - CSV以外のデータソースにアクセスする必要があり再現が大変 - EFSによるコスト(> S3) - 明示的なCSVのスキーマ管理はなし - 低コストでCSV管理を置き換えるようなFeature Storeが必要 DRIVE CHARTでのデータ管理(これまで)
19 方針 - 内製 - Feast: GCP (BQ, GCS) が前提(CHARTはAWS)
- Hopsworks: 必要以上に複雑、運用が大変そう - まずは現状のCSV管理を置き換える - Data lakeのWrapper APIという側面 - 最初はミニマルな構成でOffline (学習用)だけを実装 - 最低限のAPI - 保存/取得/削除 - スキーマ管理(validation / versioning) DRIVE CHARTでのFeature Store
20 構成: 単純なサーバー・クライアント - サーバー:ストレージの実体を隠蔽したい - 将来的にOffline/Onlineでストレージを切り替えても問題がないように - Offline -
S3: 特徴量(parquet encoding) - MySQL: メタデータ(スキーマ、バージョン) - Offlineといってもサーバーをボトルネックにしない - 実装はRust(高速・安全) DRIVE CHARTでのFeature Store ECS
21 構成: 単純なサーバー・クライアント - クライアント:ユーザーは基本的にPython - APIはFeastを参考 - pandas DataFrameを用いるAPI
- スキーマとデータの分離 - キャッシュの管理も行う - S3の遅さを補う - 内部的にはgRPCなので他言語からも利用可能 - gRPC: 高速・Streaming DRIVE CHARTでのFeature Store ECS
22 - Web UI - 再利用性、一覧性、検索性 - 統計量のモニタリング - Data
driftの検出 - 複雑なクエリ - 複数entities (primary key)の join - Time travel - 過去の特定の時点の特徴量の取得 DRIVE CHART Feature Store - Future Direction
23 - Feature Store - 中央集約的な特徴量管理 - 大規模な機械学習システムではよく用いられる - DRIVE
CHARTでは内製 - 低コストでCSV管理を置き換えたい - 現状はシンプルな構成、API - 拡張の余地はある まとめ