Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
why is academic writing important for us
Search
Sho Yokoi
PRO
October 26, 2017
Research
3
4.4k
why is academic writing important for us
2017-10-26, 研究室内勉強会資料
(1) なぜライティングスキルは重要なのか
(2) 論文投稿先に関する基礎知識
Sho Yokoi
PRO
October 26, 2017
Tweet
Share
More Decks by Sho Yokoi
See All by Sho Yokoi
言語モデルの内部機序:解析と解釈
eumesy
PRO
49
18k
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
12
3.8k
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
9
1.8k
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.6k
「確率的なオウム」にできること、またそれがなぜできるのかについて
eumesy
PRO
8
3.8k
A Theory of Emergent In-Context Learning as Implicit Structure Induction
eumesy
PRO
5
1.6k
ChatGPT と自然言語処理 / 言語の意味の計算と最適輸送
eumesy
PRO
25
18k
Revisiting Over-smoothing in BERT from the Perspective of Graph
eumesy
PRO
0
1.4k
構造を持った言語データと最適輸送
eumesy
PRO
5
7.8k
Other Decks in Research
See All in Research
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
180
データサイエンティストの就労意識~2015→2024 一般(個人)会員アンケートより
datascientistsociety
PRO
0
670
Self-supervised audiovisual representation learning for remote sensing data
satai
3
210
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
300
Generative Models 2025
takahashihiroshi
21
11k
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
230
Weekly AI Agents News!
masatoto
33
68k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
100
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
410
数理最適化に基づく制御
mickey_kubo
5
670
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
960
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
The Cult of Friendly URLs
andyhume
79
6.5k
Building an army of robots
kneath
306
45k
Faster Mobile Websites
deanohume
307
31k
Site-Speed That Sticks
csswizardry
10
660
Code Review Best Practice
trishagee
68
18k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Transcript
Why is Writing Important ݚڀͱษڧͷϧʔϧͷҧ͍ɼ͓Αͼจߘઌʹؔ͢Δجૅࣝ Research Skills ษڧձ #1; October
26th, 2017 ౦େֶ סݚڀࣨ ԣҪ (D1) 1
1. ͳͥʮจͷॻ͖ํʯΠγϡʔͳͷ͔ 2
ษڧͱݚڀతධՁͷํ๏ҟͳΔ • ษڧɿطͷݟͷशಘ͕తɽࢼݧϨϙʔτΛ௨ͯ͠ɼֶ शऀͷशख़ΛධՁɾݕূɽ • ݚڀɿਓྨʹͱͬͯະͷࣄ࣮ͷൃݟ͕తɽࠪಡͱҾ༻Λ௨ ͯ͠ɼओுʢจʣͷଥੑॏཁੑΛධՁɾݕূɽ → ݚڀ׆ಈͷ࣮ફతˍظతͳඪɼݚڀ݁ՌΛจʹ·ͱ ΊͯɼࠪಡΛύε͢Δ͜ͱɽݚڀࣨଐ͔Β1ʙ2ͰͨͲΓண
͖͍ͨɽ 3
ͳͥࠪಡ͢Δͷ͔ɼͳͥҾ༻͢Δͷ͔ ਓྨશମͰֶΛલਐͤ͞Δํ๏ৗʹΞοϓσʔτ͞Ε͖ͯ ͨɽݱࡏࠪಡͱҾ༻ʹΑͬͯݚڀͷ࣭Λ୲อ͢Δํ๏͕ओྲྀɽ • Peer ReviewʢࠪಡʣɿݚڀՌʢจʣͷॏཁੑ৽نੑΛ ઐՈಉ࢜Ͱ૬ޓݕূʢࠪಡʣ͢ΔɽࠪಡΛύεͨ͠จ͕ग़ ൛͞Εɼଞऀ͔ΒࢀরͰ͖Δঢ়ଶʹͳΔɽˡ ࠓճͷείʔϓ •
CitationʢҾ༻ʣɿઌߦݚڀΛ౿·͑ɼݞʹΓʢҾ༻͠ʣɼ ݟΛ͞ΒʹਐΊΔɽ·ͨҾ༻ʹΑΓઌߦݚڀܟҙΛࣔ͢ɽ 4
ࠪಡͰνΣοΫ͞ΕΔ߲ • ݚڀͷ༰ʹؔΘΔ߲ Noveltyʢ৽نੑʣɼOriginalityʢಠੑʣɿ৽͠͞ SignificanceʢॏཁੑʣɼRelevanceʢؔ࿈ੑʣɿॏཁ͞ Correctnessʢਖ਼ੑʣɼSoundnessʢଥੑʣɿٞͷଥ͞ • จͷॻ͖ํʹؔΘΔ߲ ← ॻ͖ํۃΊͯॏཁ
ClarityɼPresentationɿهड़ͷ໌ղ͞ɼٞͷ͍͢͞ Repeatabilityɿ࠶ݱੑʢʹಡΈख͕ࢼՄೳ͔ʣ 5
·ͱΊɿͳͥʮจͷॻ͖ํʯΠγϡʔͳͷ͔ • ݚڀ׆ಈʢਓྨͷΛલਐͤ͞Δ׆ಈʣͷεϞʔϧΰʔϧݚ ڀՌΛࠪಡ͖จͱͯ͠ग़൛͢Δ͜ͱɽ • ࠪಡͰจͷॻ͖ํ͕νΣοΫ͞ΕΔʢʹΑ͘ॻ͚͍ͯΔ จʹՁ͕͋Δʣɽ • →ʮจͷॻ͖ํʯॏཁɽ •
·ͨจͷ໌ղ͞Λ্ͤ͞ΔաఔͰɼݚڀࣗମ͕લਐ͢Δɽ 6
2. จߘઌʹؔ͢Δجૅࣝ 7
ߘઌ จͷߘઌʹଟ͘ͷબࢶ͕͋Δɽ • ࠪಡɿࠪಡͷ༗ແ • ഔମɿจࢽɼձٞͷ༧ߘूɼϫʔΫγϣοϓͷ༧ߘू • ݴޠɿӳޠʢࠃࡍࢽɼձٞʣʀຊޠʢࠃࢽɼձٞʣ • Tierɿܝࡌจͷ࣭ɼࠪಡͷݫ͠͞
8
ࠪಡ • ࠪಡͷ༗ແɿجຊతʹࠪಡ͖จͷΈ͕Ҿ༻ͷରͱͳΔɽ ݴ͍͑Εɼࠪಡͳ͠ͷจʢྫ͑ࠃձٞͷ༧ߘʣҾ ༻ͷରͱͳΒͳ͍ɽ • ಗ໊ੑɿެਖ਼ੑͷͨΊɼDouble-blindʢೋॏݕʀஶऀͱࠪಡ ऀ͕͓ޓ͍ΛΒͳ͍ʣ Single-blindʢยଆݕʀஶऀଆͩ ͚ࠪಡऀΛΒͳ͍ʣͰࠪಡ͞ΕΔ͜ͱ͕ଟ͍ɽզʑ͕ߘ
͢Δจࢽࠃࡍձٞ΄ͱΜͲ double-blind peer reviewɽ 9
ഔମ • Journal Articleʢݪஶจʣɿ௨ৗจࢽʹ࠾͞Εͨจ ͕ݪஶจʢҰ࣍ࢿྉʣͱݟͳ͞ΕҾ༻ͷରͱͳΔɽ·ͨ ͬͱॏཁͳۀͱͳΔɽࠪಡϲ݄͔Βఔɽ • Proceedings Paperʢձٞ༧ߘʣɿଟ͘ͷʹ͓͍ͯձٞڝ ૪తͰͳ࣭͘୲อ͞Ε͓ͯΒͣۀʹͳΒͳ͍ɽ͔͠͠
ਝͳࠪಡΛॏΜ͡ΔܭࢉػՊֶͷҰ෦Ͱࠃࡍձٞڝ૪త ͔ͭ࠷ॏཁࢹ͞ΕΔɽNLPಛʹݦஶɽࠪಡ1ʙ2ϲ݄ఔɽ 10
ഔମ • Preprintɿग़൛લͷݪߘΛެ։͢ΔαʔϏεʢPreprint serverʀ యܕతʹ arXivʣ͕ۙΜʹΘΕ͍ͯΔɽૣΊͷެ։Ͱ ৽نੑΛओுͰ͖ɼ·ͨۀքશମͷݚڀαΠΫϧૣ·Δɽ ※ ࣭୲อ͞Εͣۄੴࠞ߹ɽʢҾ༻ʹΑΔ୲อՄೳʣ ※
Double-blind Ͱͷࠪಡ͕࣮࣭తʹෆՄೳʹͳΔ͋Δɽ ACLίϛϡχςΟɼߘ1ϲ݄લҎޙʹϓϨϓϦϯτΛެ։ࡁ ͷจΛෆ࠾ʹ͢Δࢫએݴɽ 11
ݴޠ • զʑͷۀքͰɼجຊతʹӳޠͰॻ͔ΕͨจͷΈ͕Ҿ༻ͷର ͱͳΔɽ • ͨͩ͠ࠃจࢽɾࠃձٞͷߘʹɼۀҎ֎ʹଟ͘ͷ Ձ͕͋Δɽ ✔ จͷܗʹ·ͱΊɼ·ͨଞେֶଞݚڀػؔͷݚڀऀ͔Βί ϝϯτΛΒ͏͜ͱͰɼݚڀΛਐΊΔྑ͍ػձʹͳΔɽ
✔ ࠃͷϓϨʔϠʔʢಛʹඇݚڀऀʣͷ༗༻ͳࢀরઌʹͳΔɽ 12
Tier • ࠪಡ͕ڝ૪తͰ࠾จͷ࣭͕ߴ͍ഔମͱͦ͏Ͱͳ͍ͷ͕͋ Δɽ׳ྫతʹڝ૪తͳॱʹTop (1st) Tier, 2nd Tier, ͱΑͿɽ •
Top Tier ͷจࢽɾձٞɼࠪಡऀͱͯ͠ۀܦݧͷ͋Δݚ ڀऀׂ͕ΓͯΒΕΔ͜ͱ͕ଟ͘ɼࠪಡίϝϯτ༗ӹɽ → ͳΔ͘ྑ͍ձٞʹग़͠·͠ΐ͏ɽ • ಡΈखͱͯ͠ Tier ͷߴ͍จࢽɾձ͔ٞΒαʔϕΠ͢Δͷ͕ ޮతɽ 13
ܭࢉػՊֶͷࠃࡍձٞͷྫ NLP AI ML; DM; ΄͔ 1st Tier पล͔Β ࢀর͞ΕΔ
ACL, EMNLP, NAACL AAAI, IJCAI NIPS, ICML; KDD, WSDM; WWW, SIGIR, CVPR, InterSpeech 2nd Tier ͔֘Β ࢀর͞ΕΔ EACL, COLING, IJCNLP, CoNLL UAI, ECAI AISTATS, ICLR; ICDM, ECMLPKDD, CIKM 14
Long Paper, Short Paper ࠃࡍձٞɼLong Paperʢ6ʙ8ϖʔδఔʣͱ Short Paperʢ4ʙ6ϖʔδఔʣΛબΔέʔε͕͋Δɽ • ҰൠʹɼLong
Paper ʹ࣮ݧߟͳͲ͕ेʹἧͬͨݚڀ ΛɼShort Paper ʹΞΠσΞҰൃ࣮ݧ͕ݶఆ͞ΕͨݚڀΛ ߘ͢Δɼͱ͞Ε͍ͯΔɽ • ҰൠʹɼLong Paper ͷํ͕ڝ૪తͰ࠾จͷߴ͍ɽ 15
Oral Presentation, Poster Presentation ࠃࡍձٞʹจ͕࠾͞ΕΔͱɼձٞͰݚڀͷ༰Λൃද͢Δػ ձ͕༩͑ΒΕΔɽൃදଟ͘ͷ߹ٛɽ • ൃදͷܗଶʹ Oral Presentationʢޱ಄ൃදʣͱ
Poster Presentationʢϙελʔൃදʣ͕͋ΔɽҰൠʹɼ࠾จͷൃ දͷܗଶओ࠵ऀଆ͔Βࢦࣔ͞ΕΔɽ • Ұൠʹɼจͷ࣭͕ߴ͘ଟ͘ͷௌऺ͕ظ͞ΕΔݚڀ͕ Oral Presentation ʹׂΓͯΒΕΔɽ 16
NLPʹ͓͚ΔΑ͋͘Δߘॱ 1. ࠃձٞɿຊޠɼࠪಡͳ͠ɽۀʹͳΒͳ͍ɽจԽͷػ ձɼଞݚڀऀͱٞ͢ΔػձʹɽݴޠॲཧֶձɼNLݚͳͲɽ ࠃࡍձٞซઃϫʔΫγϣοϓಉ༷ͷϝϦοτ͕͋Γɼਪɽ 2. ࠃࡍձٞɿӳޠɼࠪಡ͋Γɽ͕͜͜ओઓɽNLP12݄͔Β4 ݄ࠒ͕ߘγʔζϯɼ6݄͔Β9݄ࠒ͕ձٞγʔζϯɽ 3. จࢽɿΞΧσϛοΫͳจ຺ͰධՁΛड͚ΔࡍʹॏཁɽTACL
࠾͞ΕΔͱACL/EMNLP/NAACLͰൃදՄɽ 17
3. ࠓޙͷ Research Skills ษڧձ ΑΓΑ͘ॻ͚ΔΑ͏ʹͳΔͨΊʹ 18
ษڧձͷείʔϓ είʔϓ είʔϓ֎ Α͍ॻ͖͔ͨΛֶͿ Α͍ςʔϚઃఆΛֶͿ How to say What to
say ୡՄೳͳٕज़ ͓ؾ࣋ͪɼҙ 19
ษڧձͰѻ͏ςʔϚ • πʔϧͷ͍ํɿLaTeX ͷ Tips ؚΊͨࣥචڥɼϊϋ ɼKWIC ͷपลπʔϧ • ӳޠͷॻ͖ํɿจతɾ׳ྫతͳݴ͍ճ͠ɼΑ͋͘Δؒҧ͍
• Α͍ߏʹ͢ΔͨΊͷํ๏ɿoutline-driven writing • ΄͔ɿ༗ӹࢿྉͷڞ༗ɼ૬ޓࠪಡɼͳͲ 20