Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
why is academic writing important for us
Search
Sho Yokoi
PRO
October 26, 2017
Research
3
4.3k
why is academic writing important for us
2017-10-26, 研究室内勉強会資料
(1) なぜライティングスキルは重要なのか
(2) 論文投稿先に関する基礎知識
Sho Yokoi
PRO
October 26, 2017
Tweet
Share
More Decks by Sho Yokoi
See All by Sho Yokoi
言語モデルの内部機序:解析と解釈
eumesy
PRO
38
16k
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
11
3.6k
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.6k
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.6k
「確率的なオウム」にできること、またそれがなぜできるのかについて
eumesy
PRO
8
3.7k
A Theory of Emergent In-Context Learning as Implicit Structure Induction
eumesy
PRO
5
1.6k
ChatGPT と自然言語処理 / 言語の意味の計算と最適輸送
eumesy
PRO
25
18k
Revisiting Over-smoothing in BERT from the Perspective of Graph
eumesy
PRO
0
1.3k
構造を持った言語データと最適輸送
eumesy
PRO
5
7.7k
Other Decks in Research
See All in Research
LLM 시대의 Compliance: Safety & Security
huffon
0
640
請求書仕分け自動化での物体検知モデル活用 / Utilization of Object Detection Models in Automated Invoice Sorting
sansan_randd
0
180
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
160
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
satai
3
420
知識強化言語モデルLUKE @ LUKEミートアップ
ikuyamada
0
400
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
130
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
130
rtrec@dbem6
myui
6
740
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
490
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
1
170
インドネシアのQA事情を紹介するの
yujijs
0
180
SI-D案内資料_京都文教大学
ryojitakeuchi1116
0
1.3k
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
830
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
The Cost Of JavaScript in 2023
addyosmani
49
7.8k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
33k
The World Runs on Bad Software
bkeepers
PRO
68
11k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
GraphQLの誤解/rethinking-graphql
sonatard
71
10k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
105
19k
Unsuck your backbone
ammeep
671
57k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
179
53k
Transcript
Why is Writing Important ݚڀͱษڧͷϧʔϧͷҧ͍ɼ͓Αͼจߘઌʹؔ͢Δجૅࣝ Research Skills ษڧձ #1; October
26th, 2017 ౦େֶ סݚڀࣨ ԣҪ (D1) 1
1. ͳͥʮจͷॻ͖ํʯΠγϡʔͳͷ͔ 2
ษڧͱݚڀతධՁͷํ๏ҟͳΔ • ษڧɿطͷݟͷशಘ͕తɽࢼݧϨϙʔτΛ௨ͯ͠ɼֶ शऀͷशख़ΛධՁɾݕূɽ • ݚڀɿਓྨʹͱͬͯະͷࣄ࣮ͷൃݟ͕తɽࠪಡͱҾ༻Λ௨ ͯ͠ɼओுʢจʣͷଥੑॏཁੑΛධՁɾݕূɽ → ݚڀ׆ಈͷ࣮ફతˍظతͳඪɼݚڀ݁ՌΛจʹ·ͱ ΊͯɼࠪಡΛύε͢Δ͜ͱɽݚڀࣨଐ͔Β1ʙ2ͰͨͲΓண
͖͍ͨɽ 3
ͳͥࠪಡ͢Δͷ͔ɼͳͥҾ༻͢Δͷ͔ ਓྨશମͰֶΛલਐͤ͞Δํ๏ৗʹΞοϓσʔτ͞Ε͖ͯ ͨɽݱࡏࠪಡͱҾ༻ʹΑͬͯݚڀͷ࣭Λ୲อ͢Δํ๏͕ओྲྀɽ • Peer ReviewʢࠪಡʣɿݚڀՌʢจʣͷॏཁੑ৽نੑΛ ઐՈಉ࢜Ͱ૬ޓݕূʢࠪಡʣ͢ΔɽࠪಡΛύεͨ͠จ͕ग़ ൛͞Εɼଞऀ͔ΒࢀরͰ͖Δঢ়ଶʹͳΔɽˡ ࠓճͷείʔϓ •
CitationʢҾ༻ʣɿઌߦݚڀΛ౿·͑ɼݞʹΓʢҾ༻͠ʣɼ ݟΛ͞ΒʹਐΊΔɽ·ͨҾ༻ʹΑΓઌߦݚڀܟҙΛࣔ͢ɽ 4
ࠪಡͰνΣοΫ͞ΕΔ߲ • ݚڀͷ༰ʹؔΘΔ߲ Noveltyʢ৽نੑʣɼOriginalityʢಠੑʣɿ৽͠͞ SignificanceʢॏཁੑʣɼRelevanceʢؔ࿈ੑʣɿॏཁ͞ Correctnessʢਖ਼ੑʣɼSoundnessʢଥੑʣɿٞͷଥ͞ • จͷॻ͖ํʹؔΘΔ߲ ← ॻ͖ํۃΊͯॏཁ
ClarityɼPresentationɿهड़ͷ໌ղ͞ɼٞͷ͍͢͞ Repeatabilityɿ࠶ݱੑʢʹಡΈख͕ࢼՄೳ͔ʣ 5
·ͱΊɿͳͥʮจͷॻ͖ํʯΠγϡʔͳͷ͔ • ݚڀ׆ಈʢਓྨͷΛલਐͤ͞Δ׆ಈʣͷεϞʔϧΰʔϧݚ ڀՌΛࠪಡ͖จͱͯ͠ग़൛͢Δ͜ͱɽ • ࠪಡͰจͷॻ͖ํ͕νΣοΫ͞ΕΔʢʹΑ͘ॻ͚͍ͯΔ จʹՁ͕͋Δʣɽ • →ʮจͷॻ͖ํʯॏཁɽ •
·ͨจͷ໌ղ͞Λ্ͤ͞ΔաఔͰɼݚڀࣗମ͕લਐ͢Δɽ 6
2. จߘઌʹؔ͢Δجૅࣝ 7
ߘઌ จͷߘઌʹଟ͘ͷબࢶ͕͋Δɽ • ࠪಡɿࠪಡͷ༗ແ • ഔମɿจࢽɼձٞͷ༧ߘूɼϫʔΫγϣοϓͷ༧ߘू • ݴޠɿӳޠʢࠃࡍࢽɼձٞʣʀຊޠʢࠃࢽɼձٞʣ • Tierɿܝࡌจͷ࣭ɼࠪಡͷݫ͠͞
8
ࠪಡ • ࠪಡͷ༗ແɿجຊతʹࠪಡ͖จͷΈ͕Ҿ༻ͷରͱͳΔɽ ݴ͍͑Εɼࠪಡͳ͠ͷจʢྫ͑ࠃձٞͷ༧ߘʣҾ ༻ͷରͱͳΒͳ͍ɽ • ಗ໊ੑɿެਖ਼ੑͷͨΊɼDouble-blindʢೋॏݕʀஶऀͱࠪಡ ऀ͕͓ޓ͍ΛΒͳ͍ʣ Single-blindʢยଆݕʀஶऀଆͩ ͚ࠪಡऀΛΒͳ͍ʣͰࠪಡ͞ΕΔ͜ͱ͕ଟ͍ɽզʑ͕ߘ
͢Δจࢽࠃࡍձٞ΄ͱΜͲ double-blind peer reviewɽ 9
ഔମ • Journal Articleʢݪஶจʣɿ௨ৗจࢽʹ࠾͞Εͨจ ͕ݪஶจʢҰ࣍ࢿྉʣͱݟͳ͞ΕҾ༻ͷରͱͳΔɽ·ͨ ͬͱॏཁͳۀͱͳΔɽࠪಡϲ݄͔Βఔɽ • Proceedings Paperʢձٞ༧ߘʣɿଟ͘ͷʹ͓͍ͯձٞڝ ૪తͰͳ࣭͘୲อ͞Ε͓ͯΒͣۀʹͳΒͳ͍ɽ͔͠͠
ਝͳࠪಡΛॏΜ͡ΔܭࢉػՊֶͷҰ෦Ͱࠃࡍձٞڝ૪త ͔ͭ࠷ॏཁࢹ͞ΕΔɽNLPಛʹݦஶɽࠪಡ1ʙ2ϲ݄ఔɽ 10
ഔମ • Preprintɿग़൛લͷݪߘΛެ։͢ΔαʔϏεʢPreprint serverʀ యܕతʹ arXivʣ͕ۙΜʹΘΕ͍ͯΔɽૣΊͷެ։Ͱ ৽نੑΛओுͰ͖ɼ·ͨۀքશମͷݚڀαΠΫϧૣ·Δɽ ※ ࣭୲อ͞Εͣۄੴࠞ߹ɽʢҾ༻ʹΑΔ୲อՄೳʣ ※
Double-blind Ͱͷࠪಡ͕࣮࣭తʹෆՄೳʹͳΔ͋Δɽ ACLίϛϡχςΟɼߘ1ϲ݄લҎޙʹϓϨϓϦϯτΛެ։ࡁ ͷจΛෆ࠾ʹ͢Δࢫએݴɽ 11
ݴޠ • զʑͷۀքͰɼجຊతʹӳޠͰॻ͔ΕͨจͷΈ͕Ҿ༻ͷର ͱͳΔɽ • ͨͩ͠ࠃจࢽɾࠃձٞͷߘʹɼۀҎ֎ʹଟ͘ͷ Ձ͕͋Δɽ ✔ จͷܗʹ·ͱΊɼ·ͨଞେֶଞݚڀػؔͷݚڀऀ͔Βί ϝϯτΛΒ͏͜ͱͰɼݚڀΛਐΊΔྑ͍ػձʹͳΔɽ
✔ ࠃͷϓϨʔϠʔʢಛʹඇݚڀऀʣͷ༗༻ͳࢀরઌʹͳΔɽ 12
Tier • ࠪಡ͕ڝ૪తͰ࠾จͷ࣭͕ߴ͍ഔମͱͦ͏Ͱͳ͍ͷ͕͋ Δɽ׳ྫతʹڝ૪తͳॱʹTop (1st) Tier, 2nd Tier, ͱΑͿɽ •
Top Tier ͷจࢽɾձٞɼࠪಡऀͱͯ͠ۀܦݧͷ͋Δݚ ڀऀׂ͕ΓͯΒΕΔ͜ͱ͕ଟ͘ɼࠪಡίϝϯτ༗ӹɽ → ͳΔ͘ྑ͍ձٞʹग़͠·͠ΐ͏ɽ • ಡΈखͱͯ͠ Tier ͷߴ͍จࢽɾձ͔ٞΒαʔϕΠ͢Δͷ͕ ޮతɽ 13
ܭࢉػՊֶͷࠃࡍձٞͷྫ NLP AI ML; DM; ΄͔ 1st Tier पล͔Β ࢀর͞ΕΔ
ACL, EMNLP, NAACL AAAI, IJCAI NIPS, ICML; KDD, WSDM; WWW, SIGIR, CVPR, InterSpeech 2nd Tier ͔֘Β ࢀর͞ΕΔ EACL, COLING, IJCNLP, CoNLL UAI, ECAI AISTATS, ICLR; ICDM, ECMLPKDD, CIKM 14
Long Paper, Short Paper ࠃࡍձٞɼLong Paperʢ6ʙ8ϖʔδఔʣͱ Short Paperʢ4ʙ6ϖʔδఔʣΛબΔέʔε͕͋Δɽ • ҰൠʹɼLong
Paper ʹ࣮ݧߟͳͲ͕ेʹἧͬͨݚڀ ΛɼShort Paper ʹΞΠσΞҰൃ࣮ݧ͕ݶఆ͞ΕͨݚڀΛ ߘ͢Δɼͱ͞Ε͍ͯΔɽ • ҰൠʹɼLong Paper ͷํ͕ڝ૪తͰ࠾จͷߴ͍ɽ 15
Oral Presentation, Poster Presentation ࠃࡍձٞʹจ͕࠾͞ΕΔͱɼձٞͰݚڀͷ༰Λൃද͢Δػ ձ͕༩͑ΒΕΔɽൃදଟ͘ͷ߹ٛɽ • ൃදͷܗଶʹ Oral Presentationʢޱ಄ൃදʣͱ
Poster Presentationʢϙελʔൃදʣ͕͋ΔɽҰൠʹɼ࠾จͷൃ දͷܗଶओ࠵ऀଆ͔Βࢦࣔ͞ΕΔɽ • Ұൠʹɼจͷ࣭͕ߴ͘ଟ͘ͷௌऺ͕ظ͞ΕΔݚڀ͕ Oral Presentation ʹׂΓͯΒΕΔɽ 16
NLPʹ͓͚ΔΑ͋͘Δߘॱ 1. ࠃձٞɿຊޠɼࠪಡͳ͠ɽۀʹͳΒͳ͍ɽจԽͷػ ձɼଞݚڀऀͱٞ͢ΔػձʹɽݴޠॲཧֶձɼNLݚͳͲɽ ࠃࡍձٞซઃϫʔΫγϣοϓಉ༷ͷϝϦοτ͕͋Γɼਪɽ 2. ࠃࡍձٞɿӳޠɼࠪಡ͋Γɽ͕͜͜ओઓɽNLP12݄͔Β4 ݄ࠒ͕ߘγʔζϯɼ6݄͔Β9݄ࠒ͕ձٞγʔζϯɽ 3. จࢽɿΞΧσϛοΫͳจ຺ͰධՁΛड͚ΔࡍʹॏཁɽTACL
࠾͞ΕΔͱACL/EMNLP/NAACLͰൃදՄɽ 17
3. ࠓޙͷ Research Skills ษڧձ ΑΓΑ͘ॻ͚ΔΑ͏ʹͳΔͨΊʹ 18
ษڧձͷείʔϓ είʔϓ είʔϓ֎ Α͍ॻ͖͔ͨΛֶͿ Α͍ςʔϚઃఆΛֶͿ How to say What to
say ୡՄೳͳٕज़ ͓ؾ࣋ͪɼҙ 19
ษڧձͰѻ͏ςʔϚ • πʔϧͷ͍ํɿLaTeX ͷ Tips ؚΊͨࣥචڥɼϊϋ ɼKWIC ͷपลπʔϧ • ӳޠͷॻ͖ํɿจతɾ׳ྫతͳݴ͍ճ͠ɼΑ͋͘Δؒҧ͍
• Α͍ߏʹ͢ΔͨΊͷํ๏ɿoutline-driven writing • ΄͔ɿ༗ӹࢿྉͷڞ༗ɼ૬ޓࠪಡɼͳͲ 20