real-time radiance field rendering." ACM Trans. Graph. 42.4 (2023): 139-1. [Mildenhall2024] Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." ECCV 2020. [Mueller2022] Müller, Thomas, et al. "Instant neural graphics primitives with a multiresolution hash encoding." ACM transactions on graphics (TOG) 41.4 (2022): 1-15. [Liu2020] Liu, Lingjie, et al. "Neural sparse voxel fields." Advances in Neural Information Processing Systems 33 (2020): 15651-15663. [Chen2023] Chen, Zhiqin, et al. "Mobilenerf: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures." CVPR. 2023. [Chen2024] Chen, Guikun, and Wenguan Wang. "A survey on 3d gaussian splatting." arXiv preprint arXiv:2401.03890 (2024). [Zwicker01] Zwicker, Matthias, et al. "EWA splatting." IEEE Transactions on Visualization and Computer Graphics 8.3 (2002): 223-238. [Bulò2024] S. R. Bulò, L. Porzi, P. Kontschieder, “Revising Densification in Gaussian Splatting,“ ECCV, 2024 [Cheng2024] J Chung, J. Oh, K. M. Lee, “Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot Images”, CVPRW, 2024 [Dahmani2024] H Dahmani, M Bennehar, N Piasco, L Roldao, D Tsishkou, Swag: Splatting in the wild images with appearance-conditioned gaussians,” ECCV, 2024 [Foroutan2024] Y. Foroutan, D. Rebain, K. M. Yi, A. Tagliasacchi, Evaluating Alternatives to SFM Point Cloud Initialization for Gaussian Splatting, arXiv, 2024 [Guedon2024] A. Guedon V. Lepetit, “SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering, CVPR, 2024. [Huang2024] B. Huang, Z. Yu, A Chen, A. Geiger, S. Gao, “2DGS: 2D Gaussian Splatting for Geometrically Accurate Radiance Fields, SIGGRAPH, 2024. [Jung2024] J. Jung, J. Han, H. An, J. Kang, S. Park, S. Kim, “RAIN-GS: Relaxing Accurate Initialization Constraint for 3D Gaussian Splatting,” arXiv, 2024. [Keetha2024] N. Keetha, J. Karhade, K. M. Jatavallabhula, G. Yang, S. Scherer, D. Ramanan, J. Luiten, “SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM,” CVPR, 2024 [Kulhanek2024] J. Kulhanek, S. Peng, Z. Kukelova, Marc Pollefeys, T. Sattler, “WildGaussians 3D Gaussian Splatting in the Wild,” NeurIPS 2024. [Niemeyer2025] M. Niemeyer, F. Manhardt, M. Rakotosaona, M. Oechsle, D. Duckworth, R. Gosula, K. Tateno, J. Bates, D. Kaeser, F. Tombari, “RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS,” 3DV, 2025. [Sabour2024] S. Sabour, L. Goli, G. Kopanas, M. Matthews, D. Lagun, L. Guibas, A. Jacobson, D. J. Fleet, A. Tagliasacchi, “SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting,” arXiv, 2024. [Zhao2024] L. Zhao, P. Wang, P. Liu, “BAD-Gaussians: Bundle-Adjusted Deblur Gaussian Splatting,” ECCV, 2024, [Matsuki-Murai24] Matsuki, H., Murai, R., Kelly, P. H., & Davison, A. J. (2024). Gaussian splatting slam. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 18039-18048). [Sola2018] Sola, J., Deray, J., & Atchuthan, D. (2018). A micro Lie theory for state estimation in robotics. arXiv preprint arXiv:1812.01537. 61