Upgrade to Pro — share decks privately, control downloads, hide ads and more …

SELECT ALL THE THINGS - Cascading Lingual, ANSI...

SELECT ALL THE THINGS - Cascading Lingual, ANSI SQL for Apache Hadoop

Slide deck of a talk I gave about Cascading and Lingual at the TU Berlin.

André Kelpe

January 13, 2014
Tweet

More Decks by André Kelpe

Other Decks in Technology

Transcript

  1. SELECT ALL THE THINGS! Cascading Lingual ANSI SQL for Apache

    Hadoop TU-Berlin, January 13th 2014 André Kelpe concurrentinc.com
  2. Speaker André Kelpe Software Engineer at Concurrent The company behind

    Cascading and Lingual concurrentinc.com / @concurrent [email protected] @fs111
  3. Cascading terminology Taps are sources and sinks for data Schemes

    represent the format of the data Pipes are connecting Taps
  4. Cascading terminology Tuples flow through Pipes Fields describe the Tuples

    Operations are executed on Tuples in TupleStreams Flows get scheduled and executed
  5. Word Count 1/4 // define source and sink Taps. Scheme

    sourceScheme = new TextLine( new Fields( "line" ) ); Tap source = new Hfs( sourceScheme, inputPath ); Scheme sinkScheme = new TextLine( new Fields( "word", "count" ) ); Tap sink = new Hfs( sinkScheme, outputPath, SinkMode.REPLACE ); // the 'head' of the pipe assembly Pipe assembly = new Pipe( "wordcount" );
  6. Word Count 2/4 // For each input Tuple // parse

    out each word into a new Tuple with the field name "word" // regular expressions are optional in Cascading String regex = "(?<!\\pL)(?=\\pL)[^ ]*(?<=\\pL)(?!\\pL)"; Function function = new RegexGenerator( new Fields( "word" ), regex ); assembly = new Each( assembly, new Fields( "line" ), function ); // group the Tuple stream by the "word" value assembly = new GroupBy( assembly, new Fields( "word" ) );
  7. // For every Tuple group // count the number of

    occurrences of "word" and store result in // a field named "count" Aggregator count = new Count( new Fields( "count" ) ); assembly = new Every( assembly, count ); // initialize app properties, tell Hadoop which jar file to use Properties properties = new Properties(); FlowConnector.setApplicationJarClass( properties, Main.class ); Word Count 3/4
  8. // plan a new Flow from the assembly using the

    source and sink Taps // with the above properties FlowConnector flowConnector = new FlowConnector( properties ); Flow flow = flowConnector.connect( "word-count", source, sink, assembly ); // execute the flow, block until complete flow.complete(); Word Count 4/4
  9. Cascalog Clojure DSL on top of Cascading Inspired by datalog

    https://github.com/nathanmarz/cascalog
  10. Lingual – design goals 2/3 Simplify SQL Migration move SQL

    workflows on your Hadoop Cluster via Cascading flows or JDBC driver
  11. Lingual – design goals 3/3 Simplify System & Data Integration

    Read and write from hdfs, jdbc, memcached, HBase, redshift...
  12. SQL in Cascading 1/2 String statement = "select *\n" +

    "from \"example\".\"sales_fact_1997\" as s\n" + "join \"example\".\"employee\" as e\n" + "on e.\"EMPID\" = s.\"CUST_ID\""; Tap empTap = new FileTap( new SQLTypedTextDelimited( ",", "\"" ), "src/main/resources/data/example/employee.tcsv", SinkMode.KEEP ); Tap salesTap = new FileTap( new SQLTypedTextDelimited( ",", "\"" ), "src/main/resources/data/example/sales_fact_1997.tcsv", SinkMode.KEEP ); Tap resultsTap = new FileTap( new SQLTypedTextDelimited( ",", "\"" ), "build/test/output/flow/results.tcsv", SinkMode.REPLACE );
  13. SQL in Cascading 2/2 FlowDef flowDef = FlowDef.flowDef() .setName( "sql

    flow" ) .addSource( "example.employee", empTap ) .addSource( "example.sales_fact_1997", salesTap ) .addSink( "results", resultsTap ); SQLPlanner sqlPlanner = new SQLPlanner() .setSql( statement ); flowDef.addAssemblyPlanner( sqlPlanner ); Flow flow = new LocalFlowConnector().connect( flowDef ); flow.complete();