Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
サーバーレスで始める ゆるふわデータ基盤 - noteの事例 -
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Retu Fukui
September 12, 2020
Technology
2
8.1k
サーバーレスで始める ゆるふわデータ基盤 - noteの事例 -
2020/09/12 JAWS SONIC 2020 & MIDNIGHT JAWS 2020にてnoteにおけるデータ基盤の事例をお話しました。
Retu Fukui
September 12, 2020
Tweet
Share
More Decks by Retu Fukui
See All by Retu Fukui
Amplifyを使ったWebサイト構築 〜 Nstockの事例を添えて 〜
fukuiretu
0
270
開発生産性と品質の横断的な課題を解決する!エンジニアリング支援室の挑戦 -1Qで取り組んだことを添えて-
fukuiretu
2
7.4k
EMになって最初の失敗談 - コミュニケーション編 -
fukuiretu
2
6.7k
問い合わせ対応当番を自動化で業務効率化している話
fukuiretu
0
910
191109_sacss.pdf
fukuiretu
1
2.5k
noteをNuxt.jsで再構築した話 -2nd-
fukuiretu
6
13k
CloudFront use cases - noteの事例 -
fukuiretu
0
8.8k
181117_wannatech.pdf
fukuiretu
1
570
noteをNuxt.jsで再構築した話
fukuiretu
22
57k
Other Decks in Technology
See All in Technology
AI時代、1年目エンジニアの悩み
jin4
1
130
AI開発の落とし穴 〜馬には乗ってみよAIには添うてみよ〜
sansantech
PRO
10
5.5k
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
1
280
月間数億レコードのアクセスログ基盤を無停止・低コストでAWS移行せよ!アプリケーションエンジニアのSREチャレンジ💪
miyamu
0
340
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
【インシデント入門】サイバー攻撃を受けた現場って何してるの?
shumei_ito
0
1.3k
書籍執筆での生成AIの活用
sat
PRO
1
240
What happened to RubyGems and what can we learn?
mikemcquaid
0
120
人はいかにして 確率的な挙動を 受け入れていくのか
vaaaaanquish
5
3.2k
2026年はチャンキングを極める!
shibuiwilliam
8
1.7k
EventBridge API Destination × AgentCore Runtimeで実現するLambdaレスなイベント駆動エージェント
har1101
7
290
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
2
450
Featured
See All Featured
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
The untapped power of vector embeddings
frankvandijk
1
1.6k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
エンジニアに許された特別な時間の終わり
watany
106
230k
Being A Developer After 40
akosma
91
590k
30 Presentation Tips
portentint
PRO
1
200
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
87
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
310
Transcript
αʔόʔϨεͰ࢝ΊΔ ΏΔ;Θσʔλج൫ OPUFͷࣄྫ +"8440/*$&.*%/*()5+"84 Ҫ
Ҫ | @fukuiretu • noteגࣜձࣾ • ΤϯδχΞ • ϑϩϯτΤϯυ
/ όοΫΤϯυ / ΠϯϑϥͱͳΜͰΔϚϯ • ੨ࡏॅ • ϦϞʔτϫʔΧʔ ɾJAWS-UG ੨ࢧ෦ॴଐ @fukuiretu @fukuiretu fukuiretu
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ ※AWSʹؔ͢Δొਓͷࡉ͔͍આ໌ંΓ·͢
50%0ޙೖΕ ΫϦΤΠλʔ͕จষϚϯΨɺࣸਅɺԻΛߘ͢Δ ͜ͱ͕Ͱ͖ɺϢʔβʔͦͷίϯςϯπΛָ͠ΜͰԠ ԉͰ͖ΔϝσΟΞϓϥοτϑΥʔϜ
noteͰΛΑͼ cakesʹ࿈ࡌ͞Εͨޙɺ ॻ੶ԽɺυϥϚԽɻ ిࢠࡶࢽʮจܳΧυΧϫʯͱ noteͰಉ࣌࿈ࡌΛͨ͠ޙɺॻ ੶ԽɺυϥϚԽ note༗ྉߪಡऀݶఆͷ ࿈ࡌΛॻ੶Խ ຖ৽ฉͷ࿈ࡌখઆΛ 10ޙʹnoteͰ࿈ࡌ
ͦͷޙɺॻ੶ԽɺөըԽ noteͷਓؾ࿈ࡌΛ ॻ੶Խ noteͰΛΑΜͩ هࣄΛॻ੶Խ ΫϦΤΠλʔͷ֗ɺnote͔Βੜ·Εͨ࡞
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
2018ࠒ͔Βσʔλੳʹ ຊࠊΛೖΕ࢝ΊΔ
データ基盤構築前のトラッキング⽅法 • ΞϓϦέʔγϣϯ্ʹτϥοΩϯά༻ͷAPI • ΞΫςΟϏςΟܥͷϩάͯ͢RDBʹอଘ
noteの急激な成⻑
成⻑とともに出てきた課題 • ΞϓϦέʔγϣϯٴͼDBͷෛՙ͕େʹ • ΫΤϦ݁Ռ͕ฦͬͯͣ͜σʔλநग़͕ࠔ
対処療法 • ύʔςΟγϣχϯά͕͞Ε͓ͯΒͣίετ͕େʹ ‣ ύϑΥʔϚϯε͍·͍ͪ… • ϧʔϧཱ͕֬͞Ε͓ͯΒͣσʔλ͕ࢄࡏ ՝ ඞཁʹԠͯ͡S3ʹDBͷσʔλΛΤΫεϙʔτ͠ɺ AthenaͰநग़
解決すべき課題 • ΞϓϦέʔγϣϯٴͼDBͷෛՙ͕େʹ • ύʔςΟγϣχϯά͕͞Ε͓ͯΒͣίετ͕େʹ • ϧʔϧཱ͕֬͞Ε͓ͯΒͣσʔλ͕ࢄࡏ σʔλج൫ͷधཁ͕ߴ·Δ
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
開発体制
⽅針 ӡ༻ϦιʔεΛ࠷খʹ = ։ൃʹઐ೦
どうしたら運⽤リソースを最⼩にできるか • ӡ༻ͷ؆ૉԽ • Φʔτεέʔϧ • Մ༻ੑ ӡ༻ϦιʔεΛ࠷খʹ = ։ൃʹઐ೦
αʔόʔϨεͷػӡͰ??
どうしたら運⽤リソースを最⼩にできるか • ӡ༻ͷ؆ૉԽ • Φʔτεέʔϧ • Մ༻ੑ ӡ༻ϦιʔεΛ࠷খʹ = ։ൃʹઐ೦
αʔόʔϨεͷػӡͰ?? αʔόʔϨεΞʔΩςΫνϟͰɺ ϛχϚϜʢΏΔ;Θʣʹελʔτ
アーキテクチャの全体像 ։ൃظؒ: 3ϲ݄ʢௐࠪɾݕূؚΉʣ
データ集約 ᶃ ᶄ ᶃ AWS Service ProxyΛར༻ͯ͠FirehoseʹPut ϝϦοτ: Lambdaෆཁ σϝϦοτ:
σʔλߏ͕ෳࡶʹͳΔͱVTLͰͷϚοϐϯά͕େม ᶄ Firehoseͷड৴σʔλมΦϓγϣϯΛར༻͠ɺ 1ϨίʔυຖʹվߦίʔυΛೖΕΔ ※Firehoseͷ্ݶʹҙʢ౦ژϦʔδϣϯ: 1000Ϩίʔυ/s, 1000τϥϯβΫγϣϯ/s, 1MiB/sʣ
データ整形 ᶃ ᶄ ᶃ S3ͷPut EventͰσʔλܗ༻ͷLambdaΛൃՐ ᶄ ओʹҎԼͷॲཧΛߦ͏ • AthenaͷύʔςΟγϣχϯάͷͨΊʹHiveܗࣜͷS3
Keyੜ ‣ e.g. content_type=action_logs/year=YYYY/month=MM/day=DD/hour=HH • Referrerͷղ • UserAgentͷղ • σʔλܕͷௐ
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
利⽤しているツール ߏཧ / σϓϩΠ AWS CDK • CloudWatch Logs •
CloudWatch Alarm • AWS Chatbot ࢹ
良かった / ⾟かった話 ! ྑ͔ͬͨ " ਏ͔ͬͨ αʔόʔͷ͓कΓ΄΅Կͯ͠ͳ͍ ϝτϦΫεΛΈ֤ͯछαʔϏεͷ্ݶʹ͔͔Βͳ͍͔͚ͩࢹ AWSͰো͕ى͖Δͱ͢ज़͕ͳ͍
e.g. 2020/04/20ʹൃੜͨ͠SQSͷେنো
当初の課題は解決できたのか ՝: ΞϓϦέʔγϣϯٴͼDBͷෛՙ͕େʹ ΞϓϦέʔγϣϯٴͼDBͱͨ͠ͷͰ΄΅ղܾʢҰ෦ҠߦͰ͖͍ͯͳ͍ʣ
当初の課題は解決できたのか ՝: ύʔςΟγϣχϯά͕͞Ε͓ͯΒͣίετ͕େʹ ύʔςΟγϣχϯάͨ͠ͷͰղܾ ΫΤϦ݁ՌετϨεແ͘ฦͬͯ͘ΔΑ͏ʹ
当初の課題は解決できたのか ՝: ϧʔϧཱ͕֬͞Ε͓ͯΒͣσʔλ͕ࢄࡏ σʔλύΠϓϥΠϯཱ͕֬͞ΕͨͷͰղܾ
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
ॳͷ՝΄΅ղফ͕ͨ͠ɺ ৽ͨͳ՝…
課題1 • ύʔςΟγϣϯͷ૿ͰΫΤϦͷύϑΥʔϚϯεʹӨڹ • ίετ͔͔Δʢैྔ՝ۚʣ AthenaͷύʔςΟγϣχϯάΛ GlueͷΫϩʔϥʔͰੜ͢ΔͷΛΊ͍ͨ
課題1の展望 • DDLͰprojection.xxxͱ͍͏ଐੑΛఆٛ͢Δ͚ͩ • ผ్ྉ͔͔ۚΒͳ͍ Partition ProjectionΛར༻͢Δ
課題2 • όονΠϯϙʔτ͕Ͱ͖ͳ͍ίετ૿ • Kinesis Firehoseͷ্ݶʢͲ͜·Ͱ؇ͯ͠Β͑Δ͔ෆಁ໌ʣ • Τϥʔ͕ى͖ͨࡍͷϋϯυϦϯάɾϦΧόϦʔ͕͍͠ API Gateway
ͱ Kinesis Firehoseؒʹ Ϋογϣϯ͕ͳ͍
課題2の展望 APIࣗલͰཱͯͯkinesis-agent(or Fluentd)Ͱ όονΠϯϙʔτ͢Δ
課題3 • ݱঢ়ఆظతʹόονͰS3Πϯϙʔτ͍ͯ͠Δ ‣ ࣌ؒͱख͕͔͔ؒΔ RDB্ͷσʔλΛAthenaͰΧδϡΞϧʹ ݁߹͍ͨ͠
課題3の展望 ϑΣσϨʔςουɾΫΤϦΛར༻͢Δ ※·ͩpreviewͳͷͰਖ਼࠲ػத
課題3の展望 https://aws.amazon.com/jp/blogs/news/query-any-data-source- with-amazon-athenas-new-federated-query/
課題4 σʔλΣΞϋεϚʔτʹ૬͢ΔσʔλΛ ༻ҙ͠རศੑΛ্͍ͨ͠
課題4の展望 • CTASΛར༻ͨ͠Parquet(ྻࢦϑΥʔϚοτ)ͷม • BigQuery Omniͷར༻
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
まとめ ॳͷ՝΄΅ղফͰ͖ɺ ӡ༻ίεταʔόʔϨεʹΑͬͯ ظ௨Γେ෯ʹܰݮͰ͖ͨ
• αʔϏεنʹΑͬͯྉۚίετ͕ͶΔՄೳੑ͋Γ • ো࣌جຊతʹ͓فΓ͢Δ͔͠ͳ͍ まとめ ͳʹΛ༏ઌ͖͔͢Λख़ߟ͢Δ αʔόʔϨεͷτϨʔυΦϑ ʢஅࡐྉ: αʔϏεಛੑɺαʔϏεنɺνʔϜͷφϨοδetc..ʣ
͋Γ͕ͱ͏͍͟͝·ͨ͠