Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
サーバーレスで始める ゆるふわデータ基盤 - noteの事例 -
Search
Retu Fukui
September 12, 2020
Technology
2
8k
サーバーレスで始める ゆるふわデータ基盤 - noteの事例 -
2020/09/12 JAWS SONIC 2020 & MIDNIGHT JAWS 2020にてnoteにおけるデータ基盤の事例をお話しました。
Retu Fukui
September 12, 2020
Tweet
Share
More Decks by Retu Fukui
See All by Retu Fukui
Amplifyを使ったWebサイト構築 〜 Nstockの事例を添えて 〜
fukuiretu
0
240
開発生産性と品質の横断的な課題を解決する!エンジニアリング支援室の挑戦 -1Qで取り組んだことを添えて-
fukuiretu
2
7.3k
EMになって最初の失敗談 - コミュニケーション編 -
fukuiretu
2
6.6k
問い合わせ対応当番を自動化で業務効率化している話
fukuiretu
0
890
191109_sacss.pdf
fukuiretu
1
2.5k
noteをNuxt.jsで再構築した話 -2nd-
fukuiretu
6
13k
CloudFront use cases - noteの事例 -
fukuiretu
0
8.8k
181117_wannatech.pdf
fukuiretu
1
540
noteをNuxt.jsで再構築した話
fukuiretu
22
57k
Other Decks in Technology
See All in Technology
LINEギフト・LINEコマース領域の開発
lycorptech_jp
PRO
0
240
【M3】攻めのセキュリティの実践!プロアクティブなセキュリティ対策の実践事例
axelmizu
0
170
「O(n log(n))のパフォーマンス」の意味がわかるようになろう
dhirabayashi
0
180
Black Hat USA 2025 Recap ~ クラウドセキュリティ編 ~
kyohmizu
0
550
仕様は“書く”より“語る” - 分断を超えたチーム開発の実践 / 20251115 Naoki Takahashi
shift_evolve
PRO
1
960
[mercari GEARS 2025] なぜメルカリはノーコードを選ばなかったのか? 社内問い合わせ工数を60%削減したLLM活用の裏側
mercari
PRO
0
120
re:Invent2025 事前勉強会 歴史と愉しみ方10分LT編
toshi_atsumi
0
140
JAWS-UG SRE支部 #14 LT
okaru
0
110
"おまじない"はもう卒業! デバッガで探るSpring Bootの裏側と「学び方」の学び方
takeuchi_132917
0
170
生成AIではじめるテスト駆動開発
puku0x
0
120
ZOZOTOWNカート決済リプレイス ── モジュラモノリスという過渡期戦略
zozotech
PRO
0
400
ABEJA FIRST GUIDE for Software Engineers
abeja
0
3.2k
Featured
See All Featured
Building an army of robots
kneath
306
46k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Visualization
eitanlees
150
16k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
33
1.8k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Rails Girls Zürich Keynote
gr2m
95
14k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Transcript
αʔόʔϨεͰ࢝ΊΔ ΏΔ;Θσʔλج൫ OPUFͷࣄྫ +"8440/*$&.*%/*()5+"84 Ҫ
Ҫ | @fukuiretu • noteגࣜձࣾ • ΤϯδχΞ • ϑϩϯτΤϯυ
/ όοΫΤϯυ / ΠϯϑϥͱͳΜͰΔϚϯ • ੨ࡏॅ • ϦϞʔτϫʔΧʔ ɾJAWS-UG ੨ࢧ෦ॴଐ @fukuiretu @fukuiretu fukuiretu
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ ※AWSʹؔ͢Δొਓͷࡉ͔͍આ໌ંΓ·͢
50%0ޙೖΕ ΫϦΤΠλʔ͕จষϚϯΨɺࣸਅɺԻΛߘ͢Δ ͜ͱ͕Ͱ͖ɺϢʔβʔͦͷίϯςϯπΛָ͠ΜͰԠ ԉͰ͖ΔϝσΟΞϓϥοτϑΥʔϜ
noteͰΛΑͼ cakesʹ࿈ࡌ͞Εͨޙɺ ॻ੶ԽɺυϥϚԽɻ ిࢠࡶࢽʮจܳΧυΧϫʯͱ noteͰಉ࣌࿈ࡌΛͨ͠ޙɺॻ ੶ԽɺυϥϚԽ note༗ྉߪಡऀݶఆͷ ࿈ࡌΛॻ੶Խ ຖ৽ฉͷ࿈ࡌখઆΛ 10ޙʹnoteͰ࿈ࡌ
ͦͷޙɺॻ੶ԽɺөըԽ noteͷਓؾ࿈ࡌΛ ॻ੶Խ noteͰΛΑΜͩ هࣄΛॻ੶Խ ΫϦΤΠλʔͷ֗ɺnote͔Βੜ·Εͨ࡞
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
2018ࠒ͔Βσʔλੳʹ ຊࠊΛೖΕ࢝ΊΔ
データ基盤構築前のトラッキング⽅法 • ΞϓϦέʔγϣϯ্ʹτϥοΩϯά༻ͷAPI • ΞΫςΟϏςΟܥͷϩάͯ͢RDBʹอଘ
noteの急激な成⻑
成⻑とともに出てきた課題 • ΞϓϦέʔγϣϯٴͼDBͷෛՙ͕େʹ • ΫΤϦ݁Ռ͕ฦͬͯͣ͜σʔλநग़͕ࠔ
対処療法 • ύʔςΟγϣχϯά͕͞Ε͓ͯΒͣίετ͕େʹ ‣ ύϑΥʔϚϯε͍·͍ͪ… • ϧʔϧཱ͕֬͞Ε͓ͯΒͣσʔλ͕ࢄࡏ ՝ ඞཁʹԠͯ͡S3ʹDBͷσʔλΛΤΫεϙʔτ͠ɺ AthenaͰநग़
解決すべき課題 • ΞϓϦέʔγϣϯٴͼDBͷෛՙ͕େʹ • ύʔςΟγϣχϯά͕͞Ε͓ͯΒͣίετ͕େʹ • ϧʔϧཱ͕֬͞Ε͓ͯΒͣσʔλ͕ࢄࡏ σʔλج൫ͷधཁ͕ߴ·Δ
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
開発体制
⽅針 ӡ༻ϦιʔεΛ࠷খʹ = ։ൃʹઐ೦
どうしたら運⽤リソースを最⼩にできるか • ӡ༻ͷ؆ૉԽ • Φʔτεέʔϧ • Մ༻ੑ ӡ༻ϦιʔεΛ࠷খʹ = ։ൃʹઐ೦
αʔόʔϨεͷػӡͰ??
どうしたら運⽤リソースを最⼩にできるか • ӡ༻ͷ؆ૉԽ • Φʔτεέʔϧ • Մ༻ੑ ӡ༻ϦιʔεΛ࠷খʹ = ։ൃʹઐ೦
αʔόʔϨεͷػӡͰ?? αʔόʔϨεΞʔΩςΫνϟͰɺ ϛχϚϜʢΏΔ;Θʣʹελʔτ
アーキテクチャの全体像 ։ൃظؒ: 3ϲ݄ʢௐࠪɾݕূؚΉʣ
データ集約 ᶃ ᶄ ᶃ AWS Service ProxyΛར༻ͯ͠FirehoseʹPut ϝϦοτ: Lambdaෆཁ σϝϦοτ:
σʔλߏ͕ෳࡶʹͳΔͱVTLͰͷϚοϐϯά͕େม ᶄ Firehoseͷड৴σʔλมΦϓγϣϯΛར༻͠ɺ 1ϨίʔυຖʹվߦίʔυΛೖΕΔ ※Firehoseͷ্ݶʹҙʢ౦ژϦʔδϣϯ: 1000Ϩίʔυ/s, 1000τϥϯβΫγϣϯ/s, 1MiB/sʣ
データ整形 ᶃ ᶄ ᶃ S3ͷPut EventͰσʔλܗ༻ͷLambdaΛൃՐ ᶄ ओʹҎԼͷॲཧΛߦ͏ • AthenaͷύʔςΟγϣχϯάͷͨΊʹHiveܗࣜͷS3
Keyੜ ‣ e.g. content_type=action_logs/year=YYYY/month=MM/day=DD/hour=HH • Referrerͷղ • UserAgentͷղ • σʔλܕͷௐ
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
利⽤しているツール ߏཧ / σϓϩΠ AWS CDK • CloudWatch Logs •
CloudWatch Alarm • AWS Chatbot ࢹ
良かった / ⾟かった話 ! ྑ͔ͬͨ " ਏ͔ͬͨ αʔόʔͷ͓कΓ΄΅Կͯ͠ͳ͍ ϝτϦΫεΛΈ֤ͯछαʔϏεͷ্ݶʹ͔͔Βͳ͍͔͚ͩࢹ AWSͰো͕ى͖Δͱ͢ज़͕ͳ͍
e.g. 2020/04/20ʹൃੜͨ͠SQSͷେنো
当初の課題は解決できたのか ՝: ΞϓϦέʔγϣϯٴͼDBͷෛՙ͕େʹ ΞϓϦέʔγϣϯٴͼDBͱͨ͠ͷͰ΄΅ղܾʢҰ෦ҠߦͰ͖͍ͯͳ͍ʣ
当初の課題は解決できたのか ՝: ύʔςΟγϣχϯά͕͞Ε͓ͯΒͣίετ͕େʹ ύʔςΟγϣχϯάͨ͠ͷͰղܾ ΫΤϦ݁ՌετϨεແ͘ฦͬͯ͘ΔΑ͏ʹ
当初の課題は解決できたのか ՝: ϧʔϧཱ͕֬͞Ε͓ͯΒͣσʔλ͕ࢄࡏ σʔλύΠϓϥΠϯཱ͕֬͞ΕͨͷͰղܾ
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
ॳͷ՝΄΅ղফ͕ͨ͠ɺ ৽ͨͳ՝…
課題1 • ύʔςΟγϣϯͷ૿ͰΫΤϦͷύϑΥʔϚϯεʹӨڹ • ίετ͔͔Δʢैྔ՝ۚʣ AthenaͷύʔςΟγϣχϯάΛ GlueͷΫϩʔϥʔͰੜ͢ΔͷΛΊ͍ͨ
課題1の展望 • DDLͰprojection.xxxͱ͍͏ଐੑΛఆٛ͢Δ͚ͩ • ผ్ྉ͔͔ۚΒͳ͍ Partition ProjectionΛར༻͢Δ
課題2 • όονΠϯϙʔτ͕Ͱ͖ͳ͍ίετ૿ • Kinesis Firehoseͷ্ݶʢͲ͜·Ͱ؇ͯ͠Β͑Δ͔ෆಁ໌ʣ • Τϥʔ͕ى͖ͨࡍͷϋϯυϦϯάɾϦΧόϦʔ͕͍͠ API Gateway
ͱ Kinesis Firehoseؒʹ Ϋογϣϯ͕ͳ͍
課題2の展望 APIࣗલͰཱͯͯkinesis-agent(or Fluentd)Ͱ όονΠϯϙʔτ͢Δ
課題3 • ݱঢ়ఆظతʹόονͰS3Πϯϙʔτ͍ͯ͠Δ ‣ ࣌ؒͱख͕͔͔ؒΔ RDB্ͷσʔλΛAthenaͰΧδϡΞϧʹ ݁߹͍ͨ͠
課題3の展望 ϑΣσϨʔςουɾΫΤϦΛར༻͢Δ ※·ͩpreviewͳͷͰਖ਼࠲ػத
課題3の展望 https://aws.amazon.com/jp/blogs/news/query-any-data-source- with-amazon-athenas-new-federated-query/
課題4 σʔλΣΞϋεϚʔτʹ૬͢ΔσʔλΛ ༻ҙ͠རศੑΛ্͍ͨ͠
課題4の展望 • CTASΛར༻ͨ͠Parquet(ྻࢦϑΥʔϚοτ)ͷม • BigQuery Omniͷར༻
アジェンダ 1. ܦҢ 2. ߏங 3. ӡ༻ 4. ࠓޙͷ՝ɾల 5.
·ͱΊ
まとめ ॳͷ՝΄΅ղফͰ͖ɺ ӡ༻ίεταʔόʔϨεʹΑͬͯ ظ௨Γେ෯ʹܰݮͰ͖ͨ
• αʔϏεنʹΑͬͯྉۚίετ͕ͶΔՄೳੑ͋Γ • ো࣌جຊతʹ͓فΓ͢Δ͔͠ͳ͍ まとめ ͳʹΛ༏ઌ͖͔͢Λख़ߟ͢Δ αʔόʔϨεͷτϨʔυΦϑ ʢஅࡐྉ: αʔϏεಛੑɺαʔϏεنɺνʔϜͷφϨοδetc..ʣ
͋Γ͕ͱ͏͍͟͝·ͨ͠