$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スクリーニング評価の注意点
Search
funain
December 28, 2022
Education
0
820
スクリーニング評価の注意点
スクリーニングを評価する際に考慮しないといけないバイアスについて紹介します。
funain
December 28, 2022
Tweet
Share
More Decks by funain
See All by funain
第3回 クイズ大会 問題
funain
0
110
第3回 クイズ大会 解答
funain
0
110
第2回 クイズ大会 問題
funain
0
180
第2回 クイズ大会 解答
funain
0
150
2023年度にやりたいこと(めぐろLT会 #2)
funain
0
570
第1回 クイズ大会 問題
funain
0
1.8k
第1回 クイズ大会 解答
funain
0
290
フェアな比較を崩すもの ~交絡と効果修飾~ / Confounding EffectModification
funain
1
590
確率分布の紹介
funain
0
880
Other Decks in Education
See All in Education
1111
cbtlibrary
0
240
Adobe Express
matleenalaakso
1
8.1k
20251119 如果是勇者欣美爾的話, 他會怎麼做? 東海資工
pichuang
0
140
バケットポリシーの記述を誤りマネコンからS3バケットを操作できなくなりそうになった話
amarelo_n24
1
140
アジャイルの知見から新卒研修作り、そして組織作り
pokotyamu
0
120
20250830_本社にみんなの公園を作ってみた
yoneyan
0
170
Réaliser un diagnostic externe
martine
0
820
Cifrado asimétrico
irocho
0
360
コマンドラインを見直そう(1995年からタイムリープ)
sapi_kawahara
0
580
IKIGAI World Fes:program
tsutsumi
1
2.6k
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
2.7k
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
510
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Embracing the Ebb and Flow
colly
88
4.9k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
スクリーニング評価の注意点 1
とあるスクリーニング利用者の声 とあるスクリーニング検査で とある疾患の診断と治療を受けたら 10年間生き延びることができました. 検査を受けずに症状が現れてから 診断と治療を受けたら 7年しか生き延びられませんでした. ⇒ スクリーニングは 3
年寿命を延ばしたので 疾患の早期発見は至高です!! 2
とあるスクリーニング利用者の声 とあるスクリーニング検査で とある疾患の診断と治療を受けたら 10年間生き延びることができました. 検査を受けずに症状が現れてから 診断と治療を受けたら 7年しか生き延びられませんでした. ⇒ スクリーニングは 3
年寿命を延ばしたので 疾患の早期発見は至高です!! 3
1. 疾患の自然経過 4
正常 前臨床期 臨床期 疾患なし 生物学的な 疾患の始まり 最初の 症状の出現 診断 治療
疾患の自然経過 (natural history) 5
正常 前臨床期 臨床期 1次予防 疾患の原因の 除去あるいは 予防接種 2次予防 スクリーニング, 検出および
早期治療 3次予防 死亡や合併症予防 のための治療 疾患なし 生物学的な 疾患の始まり 最初の 症状の出現 診断 治療 6
正常 前臨床期 臨床期 疾患なし 生物学的な 疾患の始まり 最初の 症状の出現 診断 治療
スクリーニング検査で疾患 の検出が可能となる時点 検出可能な前臨床期 : DPCP(Detectable PreClinical Phase) 7
正常 前臨床期 臨床期 疾患なし 生物学的な 疾患の始まり 最初の 症状の出現 診断 治療
スクリーニング検査の実際の早期診断 リードタイム(lead time) 8
2. スクリーニング評価関連のバイアス 9
スクリーニング評価関連のバイアス ① 選択バイアス (selection bias) ② レングスバイアス (length bias) ③
新規/既存バイアス (incidence-prevalence bias) ④ リードタイムバイアス (lead time bias) ⑤ 過剰診断バイアス (overdiagnosis bias) 10
① 選択バイアス • 受ける人々と受けない人々で特性が異なる可能性 Ex. • スクリーニングを受ける人は健康意識高い人が集まる ⇒ スクリーニングの効果と関係なく予後が良い結果 ⇒
研究デザインがRCTならば, 群間の共変量が確率的に バランスするが, RCTでないならば, 調整する必要あり 11
• スクリーニングで発見される患者は, スクリーニングの 間に発病し, 発見される患者(インターバルケース)より 予後が良い ② レングスバイアス 2回目スクリーニング 1回目スクリーニング
DPCP 12
• DPCPが長い患者の方がスクリーニングで発見しやすい • DPCPが長い患者は病気の経過が緩やかで予後が良い ⇒ スクリーニングで発見された患者とインターバル ケースを比較してはいけない • 次の新規/既存バイアスにも関連している ②
レングスバイアス 13
③ 新規/既存バイアス • スクリーニングを 2 回実施したとする • 最初に発見された患者(既存患者)と, その回では異常が なかったが
2 回目で発見された患者(新規患者)の比較 ⇒ 新規患者より既存患者の方が平均生存期間が長くなる (既存患者に長期生存者の割合が高くなるため) ⇒ スクリーニングの導入で予後が悪化したように見える ⇒ 新規患者と既存患者で比較してはいけない 14
④ リードタイムバイアス スクリーニングによる診断と治療 診断と治療 死亡 死亡 生物学的な 疾患の始まり 生物学的な 疾患の始まり
スクリー ニング群 コントロ ール群 2010 2010 2012 2022 2022 2015 15
④ リードタイムバイアス スクリーニングによる診断と治療 診断と治療 死亡 死亡 生物学的な 疾患の始まり 生物学的な 疾患の始まり
リードタイムバイアス : 3 年 スクリー ニング群 2010 2010 2012 2022 2022 2015 コントロ ール群 16
• スクリーニングの早期発見の有効性を示すには… 1. スクリーニング群の生存期間を, コントロール群の生 存期間とリードタイムを加えたもので比較する 2. スクリーニングで発見された患者の致死率を調べるの ではなく, スクリーニング群全体における疾患による
死亡率を非スクリーニング群と比較する ④ リードタイムバイアス 17
• 過剰診断は, 治療しなくても症状を起こしたり, 死亡の原因に なったりしない病気を診断すること (過剰診断の定義が異なることもあって, 検査関係者の意気込み等で誤診断(偽陽性)が 増えることという意味の場合もあるが, これは古い定義か分野の違いか?⇒最後に補足) Ex.
• 70歳以上の男性の65~100%に前立腺がんが存在する • ただし, その多くは非浸潤性のもので死因にならない ⇒症状が出てから診断された患者の方が, スクリーニングで 診断された前立腺がんの患者の方より, 悪性の割合が高くなり, そのまま比較するとバイアスが生じる ⑤ 過剰診断バイアス 18
[再掲]とあるスクリーニング利用者の声 とあるスクリーニング検査で とある疾患の診断と治療を受けたら 10年間生き延びることができました. 検査を受けずに症状が現れてから 診断と治療を受けたら 7年しか生き延びられませんでした. ⇒ スクリーニングは 3
年寿命を延ばしたので 疾患の早期発見は至高です!! 19
[再掲]スクリーニング評価関連のバイアス ① 選択バイアス (selection bias) ② レングスバイアス (length bias) ③
新規/既存バイアス (incidence-prevalence bias) ④ リードタイムバイアス (lead time bias) ⑤ 過剰診断バイアス (overdiagnosis bias) 20
• Gordis(著), 木原ら(翻訳),『疫学 -医学的研究と実践のサイエンス』第18章 • Szklo and Nieto(著),『アドバンスト分析疫学 369の図表で読み解く疫学的推論の論理と数理 』の第4章
• 名取宏, NATROMのブログ『「過剰診断」の定義の違いを認識しよう』 • https://natrom.hatenablog.com/entry/2022/03/30/110000 • 坂本,『過剰診断(overdiagnosis)の定義と過剰手術(oversurgery)/過剰治療(overtreatment)の用 法:病理医と疫学者の見解の差異』 • https://www.jstage.jst.go.jp/article/jaesjsts/38/4/38_265/_pdf/-char/ja • 祖父江友孝,『検診の効果とバイアス』 • http://www.haigan.gr.jp/journal/full/043071013.pdf 参考文献 21
• Gordisの方のテキストでは誤診断の方の定義になっていて, Szklo and Nietoでは死因になら ない方の定義になっている. • 名取宏, NATROMのブログ『「過剰診断」の定義の違いを認識しよう』では,坂本『過剰 診断(overdiagnosis)の定義と過剰手術(oversurgery)/過剰治療(overtreatment)の用
法:病理医と疫学者の見解の差異』を引用して, 疫学と病理の違いとしている. • 祖父江友孝『検診の効果とバイアス』では定義が変わってきているとしている. [補足] 過剰診断の定義の違い 22