Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
仮説の取扱説明書/User_Guide_to_a_Hypothesis
Search
florets1
June 17, 2025
Education
4
390
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
June 17, 2025
Tweet
Share
More Decks by florets1
See All by florets1
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
70
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
63
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
410
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
直積は便利/direct_product_is_useful
florets1
3
410
butterfly_effect/butterfly_effect_in-house
florets1
1
240
データハンドリング/data_handling
florets1
2
240
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
300
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
16k
Other Decks in Education
See All in Education
【Discordアカウント作成ガイド】
ainischool
0
170
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
180
Online Privacy
takahitosakamoto
1
110
2025年度春学期 統計学 第11回 分布の「型」を考える ー 確率分布モデルと正規分布 (2025. 6. 19)
akiraasano
PRO
0
180
Test-NUTMEG紹介スライド
mugiiicha
0
210
附属科学技術高等学校の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
800
授業レポート:共感と協調のリーダーシップ(2025年上期)
jibunal
0
110
~キャラ付け考えていますか?~ AI時代だからこそ技術者に求められるセルフブランディングのすゝめ
masakiokuda
7
480
令和政経義塾第2期説明会
nxji
0
220
とある長岡高専卒のおっさんがIT企業のマネージャーになるまで / journey-from-nagaoka-kosen-grad-to-it-manager
masaru_b_cl
0
100
2025年度春学期 統計学 第14回 分布についての仮説を検証する ー 仮説検定(1) (2025. 7. 10)
akiraasano
PRO
0
150
Présentation_2nde_2025.pdf
bernhardsvt
0
170
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Typedesign – Prime Four
hannesfritz
42
2.8k
Speed Design
sergeychernyshev
32
1.1k
Documentation Writing (for coders)
carmenintech
75
5k
Bash Introduction
62gerente
615
210k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
950
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Designing for humans not robots
tammielis
254
25k
Transcript
1 2025.06.21 Tokyo.R #118 仮説の取扱説明書
2 はじめに • ビジネスの現場で多用される「仮説」 • それ、本当に「仮説」ですか?
3 仮説とは • まだ検証されていない前提的な考え • データによって真偽を確かめる対象 ポイント 仮説は「データを見る前に立てる」もの
4 よくある誤用① データを見ながら仮説を立てました 例: 売上が4月から伸びた→ 「春のキャンペーンが効いたのでは?」という仮説 これは「仮説」ではなく、後付けの「説明」
5 よくある誤用② データ駆動で仮説に基づいて意思決定 データ駆動:データから出発し、仮説に依存しない 仮説駆動:先に仮説を立て、データで検証 「データ駆動で仮説に基づいて…」は矛盾を含む言い回し
6 正しい仮説の扱い方 • 仮説を立てるのは「データを見る前」 • 仮説は「検証される前提」で立てる • データで仮説の真偽を確かめる
7 補足 1. データAを見る 2. 現象に気づき、仮説Bを立てる 3. データBを新たに取得して仮説を検証 →「後だし」ではなく、「次の検証へ」進むのはOK
8 仮説を立てることが目的? なぜ仮説を立てるのか? →意思決定や未知の検証のため 既存データから合理的な説明ができるなら、無理に 仮説検証にこだわらなくてもよくないですか?
9 自問してみよう • 「これは本当に検証すべき仮説か?」 • 「説明や観察ではダメなのか?」 問いを明確にし、適した方法を選ぼう
10 言葉の正確さが思考を鍛える • 言葉の誤用を減らすと認識のズレが減る • 正しい言葉遣いは、思考の正確さにつながる 「それ、本当に仮説ですか?」 この問いを忘れずに分析に向き合いましょう