J. Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik, “The Design of the Borealis Stream Processing Engine,” in CIDR ’05: 1st Conference on Innovative Data Systems Research, 2005, pp. 277–289. [9] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y. Park, and C. Venkatramani, “SPC: A Distributed, Scalable Platform for Data Mining,” in DMSSP ’06: 4th international Workshop on Data Mining Standards, Services and Platforms, 2006, pp. 27–37. [10] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava, and J. Widom, “STREAM: The Stanford Data Stream Management System,” Stanford InfoLab, 2004. [11] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin, “Incoop: MapReduce for Incremental Computations,” in SOCC ’11: 2nd ACM Symposium on Cloud Computing, 2011, pp. 1–14. [12] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert, and C. Fetzer, “Scalable and Low-Latency Data Processing with Stream MapReduce,” in CloudCom ’11: 3rd International Conference on Cloud Computing Technology and Science, 2011, pp. 48–58. [13] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: efficient iterative data processing on large clusters,” VLDB Endowment, vol. 3, no. 1–2, pp. 285–296, Sep. 2010. [14] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears, “MapReduce Online,” in NSDI ’10: 7th Conference on Networked Systems Design and Implementation, 2010, p. 21. [15] J. Dean and S. Ghemawat, “MapReduce: Simplified Data processing on Large Clusters,” in OSDI ’04: 6th Symposium on Opearting Systems Design and Implementation, 2004, pp. 137–150. 50 References