Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
あうもんと学ぶGenAIOps
Search
gree_tech
PRO
October 17, 2025
Technology
0
6
あうもんと学ぶGenAIOps
GREE Tech Conference 2025で発表された資料です。
https://techcon.gree.jp/2025/session/TrackA-4
gree_tech
PRO
October 17, 2025
Tweet
Share
More Decks by gree_tech
See All by gree_tech
今この時代に技術とどう向き合うべきか
gree_tech
PRO
1
1.6k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
18
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
12
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
0
13
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
13
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
29
コンテンツモデレーションにおける適切な監査範囲の考察
gree_tech
PRO
0
5
新サービス立ち上げの裏側 - QUANT for Shopsで実践した開発から運用まで
gree_tech
PRO
0
4
アドフリくんにおけるマイクロサービス間での一貫したトレース実現
gree_tech
PRO
0
5
Other Decks in Technology
See All in Technology
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3k
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
310
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
43k
小学4年生夏休みの自由研究「ぼくと Copilot エージェント」
taichinakamura
0
720
Introduction to Bill One Development Engineer
sansan33
PRO
0
300
大規模サーバーレスAPIの堅牢性・信頼性設計 〜AWSのベストプラクティスから始まる現実的制約との向き合い方〜
maimyyym
10
4.7k
Node.js 2025: What's new and what's next
ruyadorno
0
330
スタートアップにおけるこれからの「データ整備」
shomaekawa
2
480
なぜAWSを活かしきれないのか?技術と組織への処方箋
nrinetcom
PRO
5
900
プレーリーカードを活用しよう❗❗デジタル名刺交換からはじまるイベント会場交流のススメ
tsukaman
0
160
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
130
ソースを読むプロセスの例
sat
PRO
7
2.6k
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
12k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
Making Projects Easy
brettharned
120
6.4k
KATA
mclloyd
32
15k
Facilitating Awesome Meetings
lara
56
6.6k
4 Signs Your Business is Dying
shpigford
185
22k
For a Future-Friendly Web
brad_frost
180
9.9k
The Cost Of JavaScript in 2023
addyosmani
55
9k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
Unsuck your backbone
ammeep
671
58k
Transcript
あうもんと学ぶGenAIOps グリーエックス社 AIX推進室長 安立健人
安立健人 / @ken11 Glossom、MoneyForwardなどを経て2025年より 再度GREE X(旧Glossom)に復帰 現在はグリーエックス株式会社でAIのプロダクト 実装を推進 NLPを中心に機械学習モデルの作成からデプロイ 運用まで一気通貫のスペシャリスト
2022年にラスベガスで行われたAWS re:Inventに 登壇 グリーエックス社 AIX推進室長 2
あうもんとは? 「あうもんAI」は、グリーエックスが提供する店 舗支援ソリューション「aumo Biz」や「QUANT for Shops」といったマーケティング支援サービス の運用をAIが代替することで、工数負荷を最小限 に抑えながら、最適な集客効果を引き出すAIエー ジェントです。各サービスの利用時に、店舗事業 者の皆様が使い慣れたLINEにて機能を提供してい
きます。 3
目次・アジェンダ • GenAIOpsってなに? • GenAIOpsにおける7つの要素 ◦ アプリケーション開発 ◦ 外部データの管理 ◦
インプットの前処理 ◦ プロンプトのデザイン ◦ 外部リソースの接続管理 ◦ アウトプットの評価 ◦ フィードバックループ • まとめ 4
GenAIOpsってなに? 5
LLMOps GenAIOps 対象 モデル運用 (MLOpsの延長) 体験全体 要素 データ モデル プロンプト
ツール接続 UX 指標 モデル指標 体験品質(SLO/コスト/安全性) GenAIOpsってなに? GenAIOps = モデル運用の外側まで含めた「生成体験の運用」 6 諸説あるもん。まだ新しい概念だもん!
GenAIOpsにおける7つの要素 7
GenAIOpsにおける7つの要素 8 アプリ開発 前処理 外部データ プロンプト ツール接続 評価 FBループ
アプリケーション開発 • 非同期化: APIは 202+jobId 返却/SQSでキュー管理 • 冪等・再実行: 自動リトライ/DLQ •
観測性: jobId で横断追跡 jobの種類ごとにコストを可視化 9 あうもんはGoでできてるもん LLMは遅い&揺れる 非同期・冪等・見える化で包む
• 🙅自由入力→🙆構造化された入力の誘導 • 不要な情報の除去 • 不適切な入力をLLMに送らないための early return 良い出力=良い入力 インプットの前処理
10 良い出力を実現するには良い入力が欠かせないもん!
外部データの管理 11 データをLLMに渡しやすくすることもGenAIOpsの役割! 自社データ(読者行動・店舗)を セキュアかつシームレスにLLMへ渡す aumo データ 整形 抽出
プロンプトデザイン 12 世に言うプロンプトエンジニアリングだもん • 目的適合:用途ごとにプロンプトを最適化 (ClaudeはXMLのセクション分けが安定) • 構造化出力:タグで出力スキーマを明示して揺 れを減らす (例:summary,
tags など) • 管理:テンプレを命名・変数化・バージョン (例:prompt.review.v2) モデル×目的に合わせ XMLで“やること/ルール/出力”を固定
外部リソースの接続 13 現実世界とつながるもん! • 目的:LLM経由でDB操作や自社データの 分析を実行 • 手段:アダプタとしてAWS Lambdaを呼び 出す
• 利用形態:Amazon Q Developer × Slack 連携で、社員がSlackからあうもんを操作 LLM単体はテキスト生成 ツール接続で“できること”を増やす
アウトプットの評価 14 安定した出力を得られなければサービスとは呼べないもん! • 形式検証:出力フォーマットを厳格バリ デーション(必須項目/型/範囲) • 内容評価:別のLLMで評価し、基準に満た ない場合は差し戻し •
継続運用:基準・閾値をテンプレ化し、 再生成/人手確認への分岐を用意 バリデーション+二次評価+運用で安定化
フィードバックループ 15 フィードバックループでどんどん賢くなるもん! • 何を集める:明示評価/暗黙指標をイベン ト化 • どう貯める:ユースケース×入力×出力×評 価をスキーマで保存 •
どう使う:良/悪例とガイドをRAGへ投 入、few-shot/禁止語として参照 再学習なしでも回す FBは外部データ化→RAGなどで反映
まとめ 16
7つの要素を「運用の3実践」に束ねる 17 GenAIOpsを理解して、AI活用を進めるもん! 包む・つなぐ・測る = GenAIOpsの骨格 包む つなぐ 測る アプリ開発
前処理 外部データ プロンプト 外部リソース 評価 FBループ
ご清聴ありがとうございました 18
None