Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
低コスト低信頼な水位計導入促進ための異常検知システム
Search
hassaku
June 23, 2020
Research
0
180
低コスト低信頼な水位計導入促進ための異常検知システム
防災テックチャレンジ2020
hassaku
June 23, 2020
Tweet
Share
More Decks by hassaku
See All by hassaku
電力データ活用ビジネスにおける機械学習技術の継続的な改善について
hassaku
4
1.2k
NILM Workshop 2017 Vendor Talk
hassaku
0
120
電力データと機械学習 センサ1つでおうちの様子を簡単に見える化
hassaku
0
2.8k
Shinamono Labo #15 Home Automation
hassaku
0
150
TokyoRubyKaigi10
hassaku
5
1.3k
PRML Chapter5 Hessian Matrix
hassaku
1
2.1k
Other Decks in Research
See All in Research
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.9k
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
120
Self-supervised audiovisual representation learning for remote sensing data
satai
3
250
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
160
90 分で学ぶ P 対 NP 問題
e869120
19
7.9k
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
7
1.1k
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
1.2k
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
360
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
300
「エージェントって何?」から「実際の開発現場で役立つ考え方やベストプラクティス」まで
mickey_kubo
0
140
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
130
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
160
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
How to Ace a Technical Interview
jacobian
278
23k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Making Projects Easy
brettharned
117
6.3k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Gamification - CAS2011
davidbonilla
81
5.4k
Into the Great Unknown - MozCon
thekraken
40
2k
Docker and Python
trallard
45
3.5k
Facilitating Awesome Meetings
lara
55
6.5k
Transcript
防災テックチャレンジ 2020 【12 ⾃由提案】 低コスト低信頼な水位計導入促進ための 異常検知システムの提案 hassaku
近年の河川氾濫の危険性増大や各自治体の人手不足を背景に 低コストなIoT水位計の需要が高まっている 将来:低コスト水位計が普及 現状:不十分かつ高コストな監視体制 背景
しかしながら、低コストが故の低信頼性が課題になり、 将来の低コスト水位計の普及を妨げることが想定される 背景
各水位計のデータ \ 異常発見! / そこで、低コスト水位計の普及促進に貢献することを目標として 異常がありそうな水位計を特定するための技術を試作した 提案内容
基本原理 時間 時間×地点数 地点数 ※事前確率、ハイパーパラメータの表示は省略 水位(観測) 流入出量 河川流量 川幅等係数
位置関係等係数 雨量 河川、水位、雨量の関係性をモデル化したグラフィカルモデル 異常検知のための基本的な仕組みとして 水位に関係しそうなデータを機械学習によりモデル化する手法を用いた 水位と雨量のデータから、各要素の関係性 を学習し、水位の正常・異常の区別をつけら れるようにすることが目標
技術検証のために東京都が公開している実際のデータを利用 水位データの計測間隔は10分毎 検証内容
妙正寺川沿いに設置された4箇所の水位計及び付近1箇所の雨量データを利用 水位4地点(三角印) 雨量1地点(星印) 4/1~5/31 4/1~5/31 検証内容
同じ川沿いの水位計同士は、相関関係をもちつつ、 雨量・川幅・位置関係等に応じた変化を示す 水位@鷺盛橋 水位@妙正寺二上 水位@上高田上 水位@落合上 雨量@中野 雨量観測所 上高田上 落合上
←上流 5/16 5/27 検証内容 鷺盛橋 妙正寺二上 点線:実際の水位 実線:水位計の数値
仮に1地点(鷺盛橋)の水位計が故障したとして 誤った水位データを記録する状況を想定(検証用に実データを加工) 水位@鷺盛橋 水位@妙正寺二上 水位@上高田上 水位@落合上 雨量@中野 雨量観測所 鷺盛橋 妙正寺二上
上高田上 落合上 ←上流 点線:実際の水位 実線:水位計の数値 5/16 5/29 5/27 検証内容 雨が降った時の実際の水位(点線)と 水位計の数値(実線)が合っていない!
時間 時間×地点数 地点数 ※事前確率、ハイパーパラメータの表示は省略 水位(観測) 流入出量 河川流量 川幅等係数 位置関係等係数
雨量 河川、水位、雨量の関係性をモデル化したグラフィカルモデル MCMC法によるパラメータ推定 河川流量 川幅等係数 流入出量 位置関係等係数 水位データの生成過程を、シンプルな階層ベイズモデルにて記述し、 MCMC法により各種パラメータを推定 検証内容
パラメータ推定したモデルを用いると、 観測するであろう水位を予測することが可能 水位@鷺盛橋 水位@妙正寺二上 水位@上高田上 水位@落合上 雨量@中野 雨量観測所 鷺盛橋 妙正寺二上
上高田上 落合上 ←上流 点線:実際の水位 青線:水位計の数値 赤線:予測水位 5/16 5/29 実際には水位が上昇しているのに、 故障によって、正しく計測出来ていない 検証内容 雨が降った時の実際の水位(点線)と 予測水位(赤線)がほぼ合っている
結果、予測した水位と実際の計測水位を比較するなどして 異常のありそうな水位計を特定することが可能となる 水位@鷺盛橋 水位@妙正寺二上 水位@上高田上 水位@落合上 雨量@中野 雨量観測所 鷺盛橋 妙正寺二上
上高田上 落合上 ←上流 棒線:予測水位と計測水位の差 5/16 5/29 検証内容 異常の可能性が一目瞭然
まとめ • 低コスト水位計で懸念される低信頼性を担保するために、機械学習モデルによる 異常判別のための仕組みを提案 • 実際の低コスト水位計や異常データに本手法を適用し、実用性を検証することが今 後の課題 • また、更に大規模な河川ネットワークをモデル化し、水位計がない河川でも水位を ある程度推定出来るようにしたりして、年々増加する河川氾濫の防災に貢献してい
きたい