Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
医療と機械学習とMRI
Search
hayata-yamamoto
April 13, 2019
Science
0
210
医療と機械学習とMRI
発表で使いました
#AIMS
hayata-yamamoto
April 13, 2019
Tweet
Share
More Decks by hayata-yamamoto
See All by hayata-yamamoto
価値提供プロセスを試行錯誤し続けてきた話
hayata_yamamoto
0
120
AppSync と仲良くなろう
hayata_yamamoto
1
190
今日から機械学習チームを始めるには
hayata_yamamoto
0
130
レアジョブのデータ活用の今とこれから
hayata_yamamoto
0
770
ざっくりとわかる分析
hayata_yamamoto
0
160
Make Questions to Solve Problems ~how to use science as tool~
hayata_yamamoto
0
32
Other Decks in Science
See All in Science
Celebrate UTIG: Staff and Student Awards 2024
utig
0
530
小杉考司(専修大学)
kosugitti
2
590
JSol'Ex : traitement d'images solaires en Java
melix
0
130
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
140
地表面抽出の方法であるSMRFについて紹介
kentaitakura
0
160
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
120
最適化超入門
tkm2261
14
3.4k
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
PRO
0
280
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
180
Coqで選択公理を形式化してみた
soukouki
0
260
機械学習を支える連続最適化
nearme_tech
PRO
1
210
Mechanistic Interpretability の紹介
sohtakahashi
0
480
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Agile that works and the tools we love
rasmusluckow
328
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Code Reviewing Like a Champion
maltzj
521
39k
How GitHub (no longer) Works
holman
312
140k
A designer walks into a library…
pauljervisheath
205
24k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.2k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
The Pragmatic Product Professional
lauravandoore
32
6.4k
How STYLIGHT went responsive
nonsquared
96
5.3k
Transcript
医療と機械学習とMRI Hayata Yamamoto
注意事項 • この資料は私個人の見解を示したものです。 所属する組織の意見を代表しません。 • 医療分野の知識については、 医療従事者から見ると至らない点がある可能性があります。
Agenda 1. 医療と機械学習 a. 医用画像解析を軸にして話します。 2. まとめ
医療と機械学習
Hayata Yamamoto (23) • 職業: Data Scientist @RareJob.inc • 経歴:
Sales -> ML eng. -> DS • 関心: 教育、ヘルスケア、医療 • Twitter: @hayata_yamamoto • 医療分野との関わり: ◦ sMRI T1の脳画像を見てました
http://www.ajnr.org/content/33/1/77
今日伝えたいこと • 医療と機械学習はとても面白い分野であること • データを分析する際には、高度な背景知識が求められること • データ分析と医療関係の知識を満遍なく習得して欲しい
医療とテクノロジーで何を思い浮かべますか?
たとえば • 電子カルテ • 遠隔診療 • 高度な医療機器 など
https://bit.ly/2rTquc5
わかること • メディカル市場は発展中 ◦ 日本が強みを発揮できる分野であるという調査もあります。 • スタートアップもたくさんいる • ウェアラブルとかも含めると、もっとたくさん会社がいそう
機械学習との関わり
現状 • 医療データの機械学習に取り組む研究者は割といます。 • 脳波から診断データ、MRI、CTなど材料はたくさんあります。 ◦ 画像認識 ◦ 自然言語処理などなど •
深層学習の定番は、医用画像のsegmentation。 ◦ Unet, Unet++とか
https://arxiv.org/pdf/1807.10165.pdf
MRIって知ってますか? • Wikipedia ◦ 核磁気共鳴画像法(かくじききょうめいがぞうほう、 英語: magnetic resonance imaging, MRI)とは、核磁気共鳴(nuclear
magnetic resonance, NMR)現象を利用して生体内の内部の情報を 画像にする方法である。 • CTとの違い ◦ 撮影時間 ▪ CTは約10分、MRIは約30分 ◦ 撮影方法の違い ▪ CTはX線、MRIは磁場の共鳴 ▪ 故に、MRIは被曝しない • 参考 ◦ http://www.kuki-med.jp/ctmri/ ◦ http://bit.ly/2UXhdi0
難しく、面白いところ • データ自体のドメイン知識がかなり必要 ◦ データによって、画像や信号の特徴が明確に異なる。 ▪ センサーデータ中心 ▪ 波形データ、2D, 3D,
4Dまである。 ▪ 画像の種類やピクセル値ごとに、移りやすい臓器や物質がある。 ◦ 階調処理、現像の処理が必要になることも。 ▪ ベンダーや取得時の環境によってデータに味がある ◦ データの見方がわからない ▪ 教師データがあってもいまいち素人には違いがわからないこともある。 ▪ 3Dデータだと、2D化する際の画像の切り方で見えない部分が発生する。 • 例えば、脳画像だとSagittal, Coronal, Axial
MRIの種類(一部) http://casemed.case.edu/clerkships/neurology/web%20neurorad/mri%20basics.htm
難しく、面白いところ • 前処理の知識 ◦ 正規化をしたりします。(ソフトウェア依存) ▪ 骨をとる、大きさを整える、など ▪ 情報の損失はいかほどか... ◦
正規化せずタスクをやることもできるが大変。←私がやってたこと ▪ 子どもと大人、男性と女性、頭の形でデータがめちゃくちゃ揺れる • データ数の少なさ ◦ そもそも多くの人は、MRIとか滅多に受けない ◦ さらに、症例の少ないデータは、正解データが本当に少ない ◦ 大きいデータの使用には、倫理審査など厳密な手続きが必要。
難しく、面白いところ • 説明責任の問題 ◦ 分類問題が予測できても、原因についての考察ができないとダメな場合がある。 ▪ LinearSVCはよく使われてる印象。係数が取れるし。 ◦ 業務効率化など、厳密な説明能力を問われない領域とは機械学習の相性が良さそう。 ◦
確率の揺らぎはどうする?(学習時の塩梅によってクラス分類が変わる可能性) • ツールに対する理解 ◦ SPM, FreeSuferなど ◦ 典型的な分析はかなりまかなえる。 ▪ 何をやってるかの理解は必要 ◦ 生データを取得した際には、既存のソフトウェアをうまく使いながら分析する必要がある ◦ 1サンプルのデータ量が大きくなるケースでは、メモリをうまく使うプログラミングも必要
要は、めっちゃいろんな知識いります。
医療ドメインとテクノロジーどちらもわかる人材が重要
ドメインの知識と機械学習は両輪
望ましいスキルセット • 医療分野に対する知見 ◦ データ生成過程やデータに対する着眼点を理解するため ◦ 着眼点から意義のあるテーマを見出すため • テクノロジーに対する知見 ◦
人がやっている思考プロセスを数学的に再現するため ◦ 実際にデータを加工して、実験を行うため もちろん、どちらかだけでも取り組むことはできる。
習得の難しさ 医療のドメイン知識 > プログラミングや機械学習
医療知識を習得する • 学習機会を得にくい • 習得までに時間がかかる ◦ 一朝一夕が難しい • 実際に使う場面が少ない テクノロジーを習得する
• 工学系学部ならおおよそ勉強できる • MOOCs, ブログなどで自学できる ◦ コピペでも最初はどうにかなる • 実際に使う場面をたくさん作れる ◦ Kaggleとか
問題設定の難しさ • タスク自体の特性をよく理解する必要性 ◦ 問題が解ければ良いのか ◦ 問題が解けた後に説明する必要もあるのか • 自力のアノテーションは、知識がないと難しい ◦
医用画像のマスク作成などは、お医者さんが日常的にやってる業務 • 分析したいテーマにそぐうデータが存在するか ◦ クローズドのデータもある(審査が必要) • できる限り実現可能なタスクにできるか ◦ 検出の難しさや、クラス分けの難しさ
医療の知識があって、データ分析をすると最強
まとめ • 医療 x Techはすごく面白く、盛り上がってる分野です。 • 医療データを扱う際には必要なドメイン知識がかなりあります。 • 医療の知識を持った上で、テクノロジーを使える人材が重要です。
ありがとうございました!