and Miyano, S. (2016). Gene set differential analysis of time course expression profiles via sparse estimation in functional logistic model with application to time dependent biomarker detection. Biostatistics, 17, 235–248. • Lin, Z., Cao, J., Wang, L., and Wang, H. (2017). Locally Sparse Estimator for Functional Linear Regression Models. Journal of Computational and Graphical Statistics, 26(2):306–318. • Matsui, H., Araki, Y., and Konishi, S. (2008). Multivariate regression modeling for functional data. Journal of Data Science, 6(3), 313–331. • Petersen, A., Müller, H.-G. (2019). Wasserstein covariance for multiple random densities, Biometrika, 106, 339–351. • Ramsay, J. (1996). Principal differential analysis. Journal of the Royal Statistical Society Series B, 58, 495–508. • Ramsay, J. and Dalzell, C. (1991). Some tools for functional data analysis. Journal of the Royal Statistical Society Series B, 53, 539–572. • Sangalli, L.M., Secchi, P., Vantini, S. and Vitelli, V. (2010). K-mean alignment for curve clustering, Computational Statistics and Data Analysis, 54, 1219-1233 • Wu, Y., Fan, J., and Müller, H. (2010b). Varying-coefficient functional linear regression. Bernoulli, 16(3):730–758. • Zhou, J., Wang, N.-y., and Wang, N. (2013). Functional linear model with zero-value coefficient function at sub-regions. Statistica Sinica, 23, 25–50. 42