Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
190
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
730
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
120
Kaggle Hungry Geese
hoxomaxwell
1
96
HuBMAP 17th place model pipeline
hoxomaxwell
1
83
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.3k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
410
Cornell Birdcall 36th place solution
hoxomaxwell
2
220
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.3k
Google Colaboratory Shortcuts
hoxomaxwell
2
1k
Other Decks in Science
See All in Science
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.5k
統計学入門講座 第1回スライド
techmathproject
0
260
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
4
320
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
420
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
120
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.4k
証明支援系LEANに入門しよう
unaoya
0
750
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.7k
機械学習を支える連続最適化
nearme_tech
PRO
1
300
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
130
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
3
760
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
360
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
The Cult of Friendly URLs
andyhume
78
6.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
28
1.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.6k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.3k
Rails Girls Zürich Keynote
gr2m
94
13k
Building Adaptive Systems
keathley
41
2.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
8
700
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.4k
Code Reviewing Like a Champion
maltzj
522
39k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714