Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
170
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
680
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
110
Kaggle Hungry Geese
hoxomaxwell
1
88
HuBMAP 17th place model pipeline
hoxomaxwell
1
74
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.3k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
400
Cornell Birdcall 36th place solution
hoxomaxwell
2
210
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.2k
Google Colaboratory Shortcuts
hoxomaxwell
2
1k
Other Decks in Science
See All in Science
ほたるのひかり/RayTracingCamp10
kugimasa
0
470
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
240
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
570
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
180
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
3
280
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
670
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
270
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.6k
機械学習を支える連続最適化
nearme_tech
PRO
1
210
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
110
AI科学の何が“哲学”の問題になるのか ~問いマッピングの試み~
rmaruy
1
2.4k
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
100
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
173
51k
Rails Girls Zürich Keynote
gr2m
94
13k
Optimizing for Happiness
mojombo
376
70k
Done Done
chrislema
182
16k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
230
52k
Designing for Performance
lara
604
68k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7.1k
How to train your dragon (web standard)
notwaldorf
89
5.8k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714