Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
230
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
900
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
160
Kaggle Hungry Geese
hoxomaxwell
1
130
HuBMAP 17th place model pipeline
hoxomaxwell
1
120
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
430
Cornell Birdcall 36th place solution
hoxomaxwell
2
250
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.8k
Google Colaboratory Shortcuts
hoxomaxwell
2
1.1k
Other Decks in Science
See All in Science
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
データマイニング - ノードの中心性
trycycle
PRO
0
320
Celebrate UTIG: Staff and Student Awards 2025
utig
0
400
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
430
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
150
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
Distributional Regression
tackyas
0
240
Hakonwa-Quaternion
hiranabe
1
160
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
460
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
13k
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
79
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
73
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
My Coaching Mixtape
mlcsv
0
13
Designing for humans not robots
tammielis
254
26k
The browser strikes back
jonoalderson
0
130
Building Applications with DynamoDB
mza
96
6.8k
How GitHub (no longer) Works
holman
316
140k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Context Engineering - Making Every Token Count
addyosmani
9
560
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714