Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
180
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
700
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
110
Kaggle Hungry Geese
hoxomaxwell
1
91
HuBMAP 17th place model pipeline
hoxomaxwell
1
78
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.3k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
410
Cornell Birdcall 36th place solution
hoxomaxwell
2
220
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.3k
Google Colaboratory Shortcuts
hoxomaxwell
2
1k
Other Decks in Science
See All in Science
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
120
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
120
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
530
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
880
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
100
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
130
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
270
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
270
Tensor Representations in Signal Processing and Machine Learning (Tutorial at APSIPA-ASC 2020)
yokotatsuya
0
110
Machine Learning for Materials (Challenge)
aronwalsh
0
100
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
130
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
840
Featured
See All Featured
A Tale of Four Properties
chriscoyier
158
23k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Become a Pro
speakerdeck
PRO
26
5.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Language of Interfaces
destraynor
156
24k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.3k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714