Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
160
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
2
600
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
110
Kaggle Hungry Geese
hoxomaxwell
1
84
HuBMAP 17th place model pipeline
hoxomaxwell
1
69
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.2k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
400
Cornell Birdcall 36th place solution
hoxomaxwell
2
210
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8k
Google Colaboratory Shortcuts
hoxomaxwell
2
980
Other Decks in Science
See All in Science
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.5k
創薬における機械学習技術について
kanojikajino
13
4.4k
General Parasitology
uni_of_nomi
0
120
Презентация программы бакалавриата СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
720
Introduction to Graph Neural Networks
joisino
PRO
4
2.1k
作業領域内の障害物を回避可能なバイナリマニピュレータの設計 / Design of binary manipulator avoiding obstacles in workspace
konakalab
0
160
How were Quaternion discovered
kinakomoti321
2
1.1k
最適化超入門
tkm2261
14
3.3k
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
220
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
110
WeMeet Group - 採用資料
wemeet
0
3.3k
拡散モデルの概要 −§2. スコアベースモデルについて−
nearme_tech
PRO
0
570
Featured
See All Featured
It's Worth the Effort
3n
183
27k
Ruby is Unlike a Banana
tanoku
97
11k
Thoughts on Productivity
jonyablonski
67
4.3k
Agile that works and the tools we love
rasmusluckow
327
21k
How STYLIGHT went responsive
nonsquared
95
5.2k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
Side Projects
sachag
452
42k
Optimizing for Happiness
mojombo
376
70k
Scaling GitHub
holman
458
140k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
The Language of Interfaces
destraynor
154
24k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714