Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
190
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
750
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
130
Kaggle Hungry Geese
hoxomaxwell
1
97
HuBMAP 17th place model pipeline
hoxomaxwell
1
87
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.3k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
410
Cornell Birdcall 36th place solution
hoxomaxwell
2
230
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.4k
Google Colaboratory Shortcuts
hoxomaxwell
2
1k
Other Decks in Science
See All in Science
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
210
学術講演会中央大学学員会大分支部
tagtag
0
140
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
320
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
160
統計学入門講座 第2回スライド
techmathproject
0
100
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
340
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
320
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.5k
Online Feedback Optimization
floriandoerfler
0
1.2k
Spectral Sparsification of Hypergraphs
tasusu
0
310
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
240
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
3
1.8k
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
91
6k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Scaling GitHub
holman
459
140k
How to Think Like a Performance Engineer
csswizardry
23
1.6k
How STYLIGHT went responsive
nonsquared
100
5.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Making the Leap to Tech Lead
cromwellryan
133
9.3k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714