Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
190
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
740
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
120
Kaggle Hungry Geese
hoxomaxwell
1
96
HuBMAP 17th place model pipeline
hoxomaxwell
1
85
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.3k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
410
Cornell Birdcall 36th place solution
hoxomaxwell
2
230
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.4k
Google Colaboratory Shortcuts
hoxomaxwell
2
1k
Other Decks in Science
See All in Science
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
100
Machine Learning for Materials (Challenge)
aronwalsh
0
260
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
280
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
110
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
840
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
450
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
210
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
100
LIMEを用いた判断根拠の可視化
kentaitakura
0
500
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
1
1.1k
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
290
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
280
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
4 Signs Your Business is Dying
shpigford
183
22k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
550
Git: the NoSQL Database
bkeepers
PRO
430
65k
Why Our Code Smells
bkeepers
PRO
336
57k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.4k
Building Applications with DynamoDB
mza
94
6.3k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
How to train your dragon (web standard)
notwaldorf
90
6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
660
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714