Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
170
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
2
620
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
110
Kaggle Hungry Geese
hoxomaxwell
1
87
HuBMAP 17th place model pipeline
hoxomaxwell
1
72
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.2k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
400
Cornell Birdcall 36th place solution
hoxomaxwell
2
210
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.1k
Google Colaboratory Shortcuts
hoxomaxwell
2
990
Other Decks in Science
See All in Science
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
1.6k
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
270
Spectral Sparsification of Hypergraphs
tasusu
0
200
マクロ経済学の視点で、財政健全化は必要か
ryo18cm
1
100
拡散モデルの概要 −§2. スコアベースモデルについて−
nearme_tech
PRO
0
690
【人工衛星】座標変換についての説明
02hattori11sat03
0
130
ほたるのひかり/RayTracingCamp10
kugimasa
0
410
創薬における機械学習技術について
kanojikajino
13
4.7k
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
200
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
230
ウェーブレットおきもち講座
aikiriao
1
800
Snowflake上でRを使う: RStudioセットアップとShinyアプリケーションのデプロイ
ktatsuya
PRO
0
480
Featured
See All Featured
Practical Orchestrator
shlominoach
186
10k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Bash Introduction
62gerente
608
210k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
520
A designer walks into a library…
pauljervisheath
204
24k
Facilitating Awesome Meetings
lara
50
6.1k
Making the Leap to Tech Lead
cromwellryan
133
9k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Become a Pro
speakerdeck
PRO
26
5k
Building Better People: How to give real-time feedback that sticks.
wjessup
365
19k
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714