Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Great Barrier Reef Model Pipeline: 15th place
Search
Maxwell
February 16, 2022
Science
1
230
Great Barrier Reef Model Pipeline: 15th place
https://www.kaggle.com/c/tensorflow-great-barrier-reef
All I want to use was YOLO-X!
Maxwell
February 16, 2022
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
930
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
180
Kaggle Hungry Geese
hoxomaxwell
1
130
HuBMAP 17th place model pipeline
hoxomaxwell
1
120
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
430
Cornell Birdcall 36th place solution
hoxomaxwell
2
250
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.8k
Google Colaboratory Shortcuts
hoxomaxwell
2
1.1k
Other Decks in Science
See All in Science
Celebrate UTIG: Staff and Student Awards 2025
utig
0
710
データマイニング - コミュニティ発見
trycycle
PRO
0
200
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
200
Lean4による汎化誤差評価の形式化
milano0017
1
430
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
Algorithmic Aspects of Quiver Representations
tasusu
0
190
力学系から見た現代的な機械学習
hanbao
3
3.9k
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
160
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
470
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
170
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.3k
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
190
Featured
See All Featured
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
700
The SEO Collaboration Effect
kristinabergwall1
0
350
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Practical Orchestrator
shlominoach
191
11k
Testing 201, or: Great Expectations
jmmastey
46
8k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Everyday Curiosity
cassininazir
0
130
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
180
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
75
Transcript
Copyright 2022 Maxwell_110 Validation strategy - Sequence-based 4 fold CV
- The number of CoTS is close in each fold - Training data is frames with CoTs - Validation data includes frames w/o CoTs Resize up to 2.75 times using progressive learning 1280 720 Augmentation Increasing probability of applying augmentation as progressive learning progresses. - Default YOLO-X augmentations - random resize: (-5, 5) - mosaic / MixUp / hsv / flip: p = 0.6 -> 0.8 - degrees: Not used - translate: 0.1 - mosaic / MixUp scale: (0.5, 1.5) - RandomGamma - RGBShift - Sharpen - GaussNoise Batch Size: 4 GeForce RTX 3080 (x 2) Solution description in Kaggle discussion https://www.kaggle.com/c/tensorflow-great-barrier-reef/discussion/307691 Learning strategy - Progressive learning - Optimizer: default SGD (decay: 5e-4, momentum: 0.9) - LR: .000625 - Scheduler: yoloxwarmcos - min_lr_ratio: 0.1 - EMA: on - warmup_epochs: 5 - max_epoch: 30 TTA Seq-NMS https://arxiv.org/abs/1602.08465 https://github.com/tmoopenn/seq-nms n_frames: 2 confidence threshold: 0.07 linkage threshold: 0.1 nms th: 0.4 Weighted Box Fusion skip box threshold: 0.05 wbf IoU threshold: 0.45 Final confidence threshold: .08 Public LB : 0.607 Private LB : 0.714