(cond (x (cond (y 't) ('t '()))) ('t '()))) (defun not. (x) (cond (x '()) ('t 't))) (defun append. (x y) (cond ((null. x) y) ('t (cons (car x) (append. (cdr x) y))))) (defun list. (x y) (cons x (cons y '()))) (defun pair. (x y) (cond ((and. (null. x) (null. y)) '()) ((and. (not. (atom x)) (not. (atom y))) (cons (list. (car x) (car y)) (pair. (cdr x) (cdr y)))))) (defun assoc. (x y) (cond ((eq (caar y) x) (cadar y)) ('t (assoc. x (cdr y))))) (defun eval. (e a) (cond ((atom e) (assoc. e a)) ((atom (car e)) (cond ((eq (car e) 'quote) (cadr e)) ((eq (car e) 'atom) (atom (eval. (cadr e) a))) ((eq (car e) 'eq) (eq (eval. (cadr e) a) (eval. (caddr e) a))) ((eq (car e) 'car) (car (eval. (cadr e) a))) ((eq (car e) 'cdr) (cdr (eval. (cadr e) a))) ((eq (car e) 'cons) (cons (eval. (cadr e) a) (eval. (caddr e) a))) ((eq (car e) 'cond) (evcon. (cdr e) a)) ('t (eval. (cons (assoc. (car e) a) (cdr e)) a)))) ((eq (caar e) 'label) (eval. (cons (caddar e) (cdr e)) (cons (list. (cadar e) (car e)) a))) ((eq (caar e) 'lambda) (eval. (caddar e) (append. (pair. (cadar e) (evlis. (cdr e) a)) a))))) (defun evcon. (c a) (cond ((eval. (caar c) a) (eval. (cadar c) a)) ('t (evcon. (cdr c) a)))) (defun evlis. (m a) (cond ((null. m) '()) ('t (cons (eval. (car m) a) (evlis. (cdr m) a)))))